Exact rotating membrane solutions on a G_{2} manifold and their semiclassical limits

Plamen Bozhilov
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences 1784 Sofia, Bulgaria
E-mail: bozhilov@inrne.bas.bg

Abstract: We obtain exact rotating membrane solutions and explicit expressions for the conserved charges on a manifold with exactly known metric of G_{2} holonomy in M-theory, with four dimensional $\mathcal{N}=1$ gauge theory dual. After that, we investigate their semiclassical limits and derive different relations between the energy and the other conserved quantities, which is a step towards M-theory lift of the semiclassical string/gauge theory correspondence for $\mathcal{N}=1$ field theories.

Keywords: p-branes, Gauge-gravity correspondence, M-Theory.

Contents

1. Introduction 1
2. The G_{2} holonomy background and its type IIA reduction 2
3. The approach 5
4. Exact rotating membrane solutions and their semiclassical limits 8
4.1 First type of membrane embedding 8
4.2 Second type of membrane embedding 13
4.3 Third type of membrane embedding 15
4.4 Forth type of membrane embedding 17
5. Concluding remarks 23
A. Hypergeometric functions $F_{D}^{(n)}$ 25
B. More solutions 26
B. 1 Fifth type of membrane embedding 26
B. 2 Sixth type of membrane embedding 28
B. 3 Seventh type of membrane embedding 29
B. 4 Eighth type of membrane embedding 31

1. Introduction

The paper [1] by Gubser, Klebanov and Polyakov on the semiclassical limit of the string/ gauge theory duality initiated also an interest in the investigation of the M-theory lift of this semiclassical correspondence and in particular, in obtaining new membrane solutions in curved space-times and relating their energy and other conserved charges to the dual objects on the field theory side [2]-10].

M2-brane configurations in $A d S_{7} \times S^{4}$ space-time, with field theory dual $A_{N-1}(2,0)$ $S C F T$, have been considered in [2]-6] and [6]. In [2], rotating membrane solution in $A d S_{7}$ have been obtained. Rotating and boosted membrane configurations was investigated in [3]. Multiwrapped circular membrane, pulsating in the radial direction of $A d S_{7}$, has been considered in [4]. A number of new membrane solutions have been found in [6] and compared with the already known ones. Membrane configurations in $A d S_{4} \times S^{7}$, $A d S_{4} \times Q^{1,1,1}$, warped $A d S_{5} \times M^{6}$ and in 11-dimensional $A d S$-black hole backgrounds have been considered in [5]. ${ }^{1}$ In [7] and [8], new membrane solutions in $A d S_{p} \times S^{q}$ have

[^0]been also obtained, by using different type of membrane embedding. ${ }^{2}$ An approach for obtaining exact membrane solutions in general M-theory backgrounds, having field theory dual description has been proposed in (9]. As an application, several types of membrane solutions in $A d S_{4} \times S^{7}$ background have been found. In a recent paper 10], p-branes in $A d S_{D}$ have been examined in two limits, where they exhibit partonic behavior. Namely, rotating branes with energy concentrated to cusp-like solitons and tensionless branes with energy distributed over singletonic bits on the Dirac hypercone. Evidence for a smooth transition from cusps to bits have been found.

To our knowledge, the only paper devoted to rotating membranes on G_{2} manifolds is [5], where various membrane configurations on different G_{2} holonomy backgrounds have been studied systematically. In the semiclassical limit (large conserved charges), the following relations between the energy and the corresponding charge K have been obtained: $E \sim$ $K^{1 / 2}, E \sim K^{2 / 3}, E-K \sim K^{1 / 3}, E-K \sim \ln K$.

Here, our approach will be different. Taking into account that only a small number of G_{2} holonomy metrics are known exactly, we choose to search for rotating membrane solutions on one of these metrics, namely, the one discovered in [14]. In section 2, we describe the G_{2} holonomy background of (14 and its reduction to type IIA string theory. In section 3, we settle the framework, which we will work in. In section 4 , we obtain a number of exact rotating membrane solutions and the explicit expressions for the corresponding conserved charges. Then, we take the semiclassical limit and derive different energy-charge relations. They reproduce and generalize part of the results obtained in 45, for the case of more than one conserved charges. Section 5 is devoted to our concluding remarks.

2. The G_{2} holonomy background and its type IIA reduction

The background is a one-parameter family of G_{2} holonomy metrics (parameterized by r_{0}), which play an important role as supergravity dual of the large N limit of four dimensional $\mathcal{N}=1$ supersymmetric Yang-Mills. These metrics describe the M theory lift of the supergravity solution corresponding to a collection of D6-branes wrapping the supersymmetric three-cycle of the deformed conifold geometry for any value of the string coupling constant. The explicit expression for the metric with $S U(2) \times S U(2) \times U(1) \times Z_{2}$ symmetry is given by (14]

$$
\begin{equation*}
d s_{7}^{2}=\sum_{a=1}^{7} e^{a} \otimes e^{a} \tag{2.1}
\end{equation*}
$$

with the following vielbeins

$$
\begin{array}{ll}
e^{1}=A(r)\left(\sigma_{1}-\Sigma_{1}\right), & \\
e^{2}=A(r)\left(\sigma_{2}-\Sigma_{2}\right), \\
e^{3}=D(r)\left(\sigma_{3}-\Sigma_{3}\right), & \\
e^{4}=B(r)\left(\sigma_{1}+\Sigma_{1}\right), \tag{2.2}\\
e^{5}=B(r)\left(\sigma_{2}+\Sigma_{2}\right), & \\
e^{6}=r_{0} C(r)\left(\sigma_{3}+\Sigma_{3}\right), \\
e^{7}=d r / C(r), &
\end{array}
$$

[^1]where
\[

$$
\begin{align*}
& A=\frac{1}{\sqrt{12}} \sqrt{\left(r-3 r_{0} / 2\right)\left(r+9 r_{0} / 2\right)}, \quad B=\frac{1}{\sqrt{12}} \sqrt{\left(r+3 r_{0} / 2\right)\left(r-9 r_{0} / 2\right)}, \\
& C=\sqrt{\frac{\left(r-9 r_{0} / 2\right)\left(r+9 r_{0} / 2\right)}{\left(r-3 r_{0} / 2\right)\left(r+3 r_{0} / 2\right)}}, \quad D=r / 3 \tag{2.3}
\end{align*}
$$
\]

and

$$
\begin{array}{ll}
\sigma_{1}=\sin \psi \sin \theta d \phi+\cos \psi d \theta, & \Sigma_{1}=\sin \tilde{\psi} \sin \tilde{\theta} d \tilde{\phi}+\cos \tilde{\psi} d \tilde{\theta} \\
\sigma_{2}=\cos \psi \sin \theta d \phi-\sin \psi d \theta, & \Sigma_{2}=\cos \tilde{\psi} \sin \tilde{\theta} d \tilde{\phi}-\sin \tilde{\psi} d \tilde{\theta} \\
\sigma_{3}=\cos \theta d \phi+d \psi, & \Sigma_{3}=\cos \tilde{\theta} d \tilde{\phi}+d \tilde{\psi} \tag{2.4}
\end{array}
$$

This metric is Ricci flat and complete for $r \geq 9 r_{0} / 2$. It has a G_{2}-structure given by the following covariantly constant three-form

$$
\begin{aligned}
\Phi & =\frac{9 r_{0}^{3}}{16} \epsilon_{a b c}\left(\sigma_{a} \wedge \sigma_{b} \wedge \sigma_{c}-\Sigma_{a} \wedge \Sigma_{b} \wedge \Sigma_{c}\right) \\
& +d\left[\frac{r}{18}\left(r^{2}-\frac{27 r_{0}^{2}}{4}\right)\left(\sigma_{1} \wedge \Sigma_{1}+\sigma_{2} \wedge \Sigma_{2}\right)+\frac{r_{0}}{3}\left(r^{2}-\frac{81 r_{0}^{2}}{8}\right) \sigma_{3} \wedge \Sigma_{3}\right]
\end{aligned}
$$

which guarantees the existence of a unique covariantly constant spinor 14 .
The metric under consideration is a $U(1)$ bundle over a six-dimensional manifold. The circle, parameterized by the vielbein e^{6}, has its size at infinity set by r_{0}, because $C \rightarrow 1$ when $r \rightarrow \infty$. Let us note that the size of the circle at infinity, determines the Type IIA string coupling constant 14. For $r \rightarrow 9 r_{0} / 2, C \rightarrow 0$ and the circle shrinks to zero size.

In order to obtain the behavior of the metric for $r \rightarrow \infty$ and $r \rightarrow 9 r_{0} / 2$, one can rewrite it as follows

$$
\begin{equation*}
d s_{7}^{2}=d r^{2} / C^{2}+A^{2}\left(\left(g^{1}\right)^{2}+\left(g^{2}\right)^{2}\right)+B^{2}\left(\left(g^{3}\right)^{2}+\left(g^{4}\right)^{2}\right)+D^{2}\left(g^{5}\right)^{2}+r_{0} C^{2}\left(g^{6}\right)^{2} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
g^{1} & =-\sin \theta_{1} d \phi_{1}-\cos \psi_{1} \sin \theta_{2} d \phi_{2}+\sin \psi_{1} d \theta_{2} \\
g^{2} & =d \theta_{1}-\sin \psi_{1} \sin \theta_{2} d \phi_{2}-\cos \psi_{1} d \theta_{2} \\
g^{3} & =-\sin \theta_{1} d \phi_{1}+\cos \psi_{1} \sin \theta_{2} d \phi_{2}-\sin \psi_{1} d \theta_{2} \\
g^{4} & =d \theta_{1}+\sin \psi_{1} \sin \theta_{2} d \phi_{2}+\cos \psi_{1} d \theta_{2} \\
g^{5} & =d \psi_{1}+\cos \theta_{1} d \phi_{1}+\cos \theta_{2} d \phi_{2} \\
g^{6} & =d \psi_{2}+\cos \theta_{1} d \phi_{1}-\cos \theta_{2} d \phi_{2}
\end{aligned}
$$

Then the asymptotic behavior of the metric at infinity is given by 14

$$
d s^{2}=d r^{2}+r^{2}\left[\frac{1}{9}\left(d \psi_{1}+\sum_{i=1}^{2} \cos \theta_{i} d \phi_{i}\right)^{2}+\frac{1}{6} \sum_{i=1}^{2}\left(d \theta_{i}^{2}+\sin ^{2} \theta_{i} d \phi_{i}^{2}\right)\right]+r_{0}\left(g^{6}\right)^{2}
$$

This geometry is that of a $U(1)$ bundle over the singular conifold metric with $S U(3)$ holonomy. The base of the cone is described by the Einstein metric on the homogeneous space $T^{1,1}=(S U(2) \times S U(2)) / U(1)$ where the $U(1)$ is diagonally embedded along the Cartan generator of the $S U(2)$'s. Therefore, at infinity the metric is topologically $\mathbf{R}_{+} \times$ $\mathbf{S}^{1} \times \mathbf{S}^{2} \times \mathbf{S}^{3}$.

In the interior, the metric is non-singular everywhere and near $r=9 r_{0} / 2$ it behaves as

$$
d s^{2} \sim d \rho^{2}+\frac{9}{4} r_{0}^{2}\left[\left(g^{1}\right)^{2}+\left(g^{2}\right)^{2}+\left(g^{5}\right)^{2}\right]+\frac{\rho^{2}}{16}\left[\left(g^{3}\right)^{2}+\left(g^{4}\right)^{2}+\left(g^{6}\right)^{2}\right]
$$

where $\rho^{2}=8 r_{0}\left(r-9 r_{0} / 2\right)$. Hence, there exist an \mathbf{S}^{3} of finite size and topologically the space becomes $\mathbf{R}^{4} \times \mathbf{S}^{3}$. As far as $A=D$ and $C=D$ as $r \rightarrow 9 r_{0} / 2$, in the interior the metric has enhanced $S U(2) \times S U(2) \times S U(2) \times Z_{2}$ symmetry. It can be shown 14, that the metric we get when $r \rightarrow 9 r_{0} / 2$, is the previously known asymptotically conical metric of G_{2} holonomy on the spin bundle over $\mathbf{S}^{3} 15-17$.

An interesting particular case is when the function C in (2.5) vanishes, and the metric of the resulting six-dimensional manifold is given by 14

$$
\begin{align*}
d s_{6}^{2} & =d t^{2}+A^{2}\left[\left(\sigma_{1}-\Sigma_{1}\right)^{2}+\left(\sigma_{2}-\Sigma_{2}\right)^{2}\right]+B^{2}\left[\left(\sigma_{1}+\Sigma_{1}\right)^{2}+\left(\sigma_{2}+\Sigma_{2}\right)^{2}\right] \tag{2.6}\\
& +D^{2}\left(\sigma_{3}-\Sigma_{3}\right)^{2}, \quad d r=C d t
\end{align*}
$$

We note that setting $C=0$ reduces the symmetry to $S U(2) \times S U(2) \times Z_{2}$ which is precisely the symmetry of the deformed conifold. In this way, one recovers the known metric of $S U(3)$ holonomy on the deformed conifold geometry [18]. Actually, after appropriate change of the coordinates (14], the metric (2.6) takes the form 19]

$$
\begin{aligned}
d s_{6}^{2}=K(\tau)\left\{\frac{1}{3 K^{3}(\tau)}\left[d \tau^{2}+\left(g^{5}\right)^{2}\right]\right. & +\frac{1}{4} \sinh ^{2}(\tau / 2)\left[\left(g^{1}\right)^{2}+\left(g^{2}\right)^{2}\right] \\
& \left.+\frac{1}{4} \cosh ^{2}(\tau / 2)\left[\left(g^{3}\right)^{2}+\left(g^{4}\right)^{2}\right]\right\}
\end{aligned}
$$

where

$$
K(\tau)=\frac{[\sinh (2 \tau) / 2-\tau]^{1 / 3}}{\sinh (\tau)}
$$

Asymptotically, this metric is also conical and the base of the cone is topologically $\mathbf{S}^{2} \times \mathbf{S}^{3}$.
The metric (2.1)-(2.4) can be used to describe a four-dimensional vacuum of the type $\mathbf{R}^{1,3} \times \mathbf{X}_{7}$, where \mathbf{X}_{7} is the G_{2} manifold, with four-dimensional $\mathcal{N}=1$ supersymmetry. The metric under consideration has a $U(1)$ isometry which acts by shifts on an angular coordinate. Hence, one can reduce it along this $U(1)$ isometry to obtain a Type IIA solution by using that

$$
d s_{11}^{2}=e^{-2 \phi / 3} d s_{10}^{2}+e^{4 \phi / 3}\left(d x_{11}+C_{\mu} d x^{\mu}\right)^{2}
$$

where ϕ and C_{μ} are the Type IIA dilaton and Ramond-Ramond one-form gauge field respectively. If we identify x_{11} with ψ_{2}, the reduction to ten dimensions give the following

Type IIA solution 14

$$
\begin{align*}
& d s_{10}^{2}=r_{0}^{1 / 2} C\left\{d x_{1,3}^{2}+A^{2}\left[\left(g^{1}\right)^{2}+\left(g^{2}\right)^{2}\right]+B^{2}\left[\left(g^{3}\right)^{2}+\left(g^{4}\right)^{2}\right]+D^{2}\left(g^{5}\right)^{2}\right\}+r_{0}^{1 / 2} \frac{d r^{2}}{C} \\
& e^{\phi}=r_{0}^{3 / 4} C^{\frac{3}{2}}, \quad F_{2}=\sin \theta_{1} d \phi_{1} \wedge d \theta_{1}-\sin \theta_{2} d \phi_{2} \wedge d \theta_{2} \tag{2.7}
\end{align*}
$$

This solution describes a D6-brane wrapping the \mathbf{S}^{3} in the deformed conifold geometry. For $r \rightarrow \infty$, the Type IIA metric becomes that of a singular conifold, the dilaton is constant, and the flux is through the \mathbf{S}^{2} surrounding the wrapped D6-brane. For $r-9 r_{0} / 2=\epsilon \rightarrow 0$, the string coupling e^{ϕ} goes to zero like $\epsilon^{\frac{3}{4}}$, whereas the curvature blows up as $\epsilon^{-\frac{3}{2}}$ just like in the near horizon region of a flat D6-brane. This means that classical supergravity is valid for sufficiently large radius. However, the singularity in the interior is the same as the one of flat D6 branes, as expected. On the other hand, the dilaton continuously decreases from a finite value at infinity to zero, so that for small r_{0} classical string theory is valid everywhere. As explained in [14, the global geometry is that of a warped product of flat Minkowski space and a non-compact space, Y_{6}, which for large radius is simply the conifold since the backreaction of the wrapped D6 brane becomes less and less important. However, in the interior, the backreaction induces changes on Y_{6} away from the conifold geometry. For $r \rightarrow 9 r_{0} / 2$, the \mathbf{S}^{2} shrinks to zero size, whereas an \mathbf{S}^{3} of finite size remains. This behavior is similar to that of the deformed conifold but the two metrics are different. If one mod out the initial eleven-dimensional metric by the following Z_{N} action 14

$$
Z_{N}: \psi_{2} \rightarrow \psi_{2}+\pi / N
$$

with fixed points located on the \mathbf{S}^{3}, then the size of the circle parameterized by ψ_{2} goes to zero. As a result, the local geometry at $r \approx 9 r_{0} / 2$ becomes singular, with A_{N-1} singularity fibered over \mathbf{S}^{3}, i.e. the so-called singular quotient 20], 21]. After compactification to Type IIA theory, it describes N coincident D6-branes wrapped on the supersymmetric \mathbf{S}^{3} of the deformed conifold.

3. The approach

In this section, we settle the framework, which we will work in. Actually, we will use the general approach developed in (9].

We start with the following membrane action

$$
\begin{equation*}
S=\int d^{3} \xi \mathcal{L}=\int d^{3} \xi\left\{\frac{1}{4 \lambda^{0}}\left[G_{00}-2 \lambda^{j} G_{0 j}+\lambda^{i} \lambda^{j} G_{i j}-\left(2 \lambda^{0} T_{2}\right)^{2} \operatorname{det} G_{i j}\right]+T_{2} B_{012}\right\} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{array}{r}
G_{m n}=g_{M N}(X) \partial_{m} X^{M} \partial_{n} X^{N}, \quad B_{012}=b_{M N P}(X) \partial_{0} X^{M} \partial_{1} X^{N} \partial_{2} X^{P} \\
\partial_{m}=\partial / \partial \xi^{m}, \quad m=(0, i)=(0,1,2), \quad M=(0,1, \ldots, 10)
\end{array}
$$

are the fields induced on the membrane worldvolume, λ^{m} are Lagrange multipliers, $x^{M}=$ $X^{M}(\xi)$ are the membrane embedding coordinates, and T_{2} is its tension. As shown in 22,
the above action is classically equivalent to the Nambu-Goto type action

$$
S^{N G}=-T_{2} \int d^{3} \xi\left(\sqrt{-\operatorname{det} G_{m n}}-\frac{1}{6} \varepsilon^{m n p} \partial_{m} X^{M} \partial_{n} X^{N} \partial_{p} X^{P} b_{M N P}\right)
$$

and to the Polyakov type action

$$
S^{P}=-\frac{T_{2}}{2} \int d^{3} \xi\left[\sqrt{-\gamma}\left(\gamma^{m n} G_{m n}-1\right)-\frac{1}{3} \varepsilon^{m n p} \partial_{m} X^{M} \partial_{n} X^{N} \partial_{p} X^{P} b_{M N P}\right]
$$

where $\gamma^{m n}$ is the auxiliary worldvolume metric and $\gamma=\operatorname{det} \gamma_{m n}$. In addition, the action (3.1) gives a unified description for the tensile and tensionless membranes.

The equations of motion for the Lagrange multipliers λ^{m} generate the constraints

$$
\begin{align*}
& G_{00}-2 \lambda^{j} G_{0 j}+\lambda^{i} \lambda^{j} G_{i j}+\left(2 \lambda^{0} T_{2}\right)^{2} \operatorname{det} G_{i j}=0 \tag{3.2}\\
& G_{0 j}-\lambda^{i} G_{i j}=0 \tag{3.3}
\end{align*}
$$

Further on, we will work in the worldvolume gauge $\lambda^{i}=0, \lambda^{0}=$ const in which the action (3.1) and the constraints (3.2), (3.3) simplify to

$$
\begin{align*}
& S_{g f}=\int d^{3} \xi\left\{\frac{1}{4 \lambda^{0}}\left[G_{00}-\left(2 \lambda^{0} T_{2}\right)^{2} \operatorname{det} G_{i j}\right]+T_{2} B_{012}\right\} \tag{3.4}\\
& G_{00}+\left(2 \lambda^{0} T_{2}\right)^{2} \operatorname{det} G_{i j}=0 \tag{3.5}\\
& G_{0 i}=0 \tag{3.6}
\end{align*}
$$

Let us note that the action (3.4) and the constraints (3.5), (3.6) coincide with the usually used gauge fixed Polyakov type action and constraints after the following identification of the parameters (see for instance [5])

$$
2 \lambda^{0} T_{2}=L
$$

Supposing that there exist a (non-fixed) number of commuting Killing vectors $\partial / \partial x^{\mu}$, which leads to

$$
\begin{equation*}
\partial_{\mu} g_{M N}=0, \quad \partial_{\mu} b_{M N P}=0 \tag{3.7}
\end{equation*}
$$

we will search for rotating membrane solutions in the framework of the following embedding $\left(X^{M}=\left(X^{\mu}, X^{a}\right), \Lambda_{m}^{\mu}=\right.$ constants $)$

$$
\begin{equation*}
X^{\mu}\left(\xi^{m}\right)=X^{\mu}(\tau, \delta, \sigma)=\Lambda_{m}^{\mu} \xi^{m}=\Lambda_{0}^{\mu} \tau+\Lambda_{1}^{\mu} \delta+\Lambda_{2}^{\mu} \sigma, \quad X^{a}\left(\xi^{m}\right)=Z^{a}(\sigma) \tag{3.8}
\end{equation*}
$$

The above ansatz reduces the Lagrangian density in the action (3.4) to $\left(Z^{\prime a}=d Z^{a} / d \sigma\right)$

$$
\begin{equation*}
\mathcal{L}^{A}(\sigma)=\frac{1}{4 \lambda^{0}}\left[K_{a b}(g) Z^{\prime a} Z^{\prime b}+2 A_{a}(g, b) Z^{\prime a}-V(g, b)\right] \tag{3.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{a b}(g)=-\left(2 \lambda^{0} T_{2}\right)^{2} \Lambda_{1}^{\mu} \Lambda_{1}^{\nu}\left(g_{a b} g_{\mu \nu}-g_{a \mu} g_{b \nu}\right) \\
& A_{a}(g, b)=\left(2 \lambda^{0} T_{2}\right)^{2} \Lambda_{1}^{\mu} \Lambda_{1}^{\nu} \Lambda_{2}^{\rho}\left(g_{a \mu} g_{\nu \rho}-g_{a \rho} g_{\mu \nu}\right)+2 \lambda^{0} T_{2} \Lambda_{0}^{\mu} \Lambda_{1}^{\nu} b_{a \mu \nu} \\
& V(g, b)=-\Lambda_{0}^{\mu} \Lambda_{0}^{\nu} g_{\mu \nu}+\left(2 \lambda^{0} T_{2}\right)^{2} \Lambda_{1}^{\mu} \Lambda_{1}^{\nu} \Lambda_{2}^{\rho} \Lambda_{2}^{\lambda}\left(g_{\mu \nu} g_{\rho \lambda}-g_{\mu \rho} g_{\nu \lambda}\right)-4 \lambda^{0} T_{2} \Lambda_{0}^{\mu} \Lambda_{1}^{\nu} \Lambda_{2}^{\rho} b_{\mu \nu \rho}
\end{aligned}
$$

\mathcal{L}^{A} does not depend on τ and δ because of (3.7) and (3.8).

Now, the constraints (3.5) and (3.6) can be written in the form

$$
\begin{align*}
& K_{a b} Z^{\prime a} Z^{\prime b}+U=0, \tag{3.10}\\
& \Lambda_{0}^{\mu} \Lambda_{1}^{\nu} g_{\mu \nu}=0, \tag{3.11}\\
& \Lambda_{0}^{\mu}\left(g_{\mu a} Z^{\prime a}+\Lambda_{2}^{\nu} g_{\mu \nu}\right)=0, \tag{3.12}
\end{align*}
$$

where $U=V+4 \lambda^{0} \Lambda_{2}^{\mu} \mathcal{P}_{\mu}^{2}$, and

$$
\begin{align*}
2 \lambda^{0} \mathcal{P}_{\mu}^{2} & =\left(2 \lambda^{0} T_{2}\right)^{2} \Lambda_{1}^{\nu} \Lambda_{1}^{\rho}\left(g_{\mu \nu} g_{\rho a}-g_{\nu \rho} g_{\mu a}\right) Z^{\prime a} \\
& +\left(2 \lambda^{0} T_{2}\right)^{2} \Lambda_{1}^{\nu} \Lambda_{1}^{\rho} \Lambda_{2}^{\lambda}\left(g_{\mu \nu} g_{\rho \lambda}-g_{\mu \lambda} g_{\nu \rho}\right)+2 \lambda^{0} T_{2} \Lambda_{0}^{\nu} \Lambda_{1}^{\rho} b_{\mu \nu \rho} \tag{3.13}
\end{align*}
$$

are constants of the motion [9].
Due to the independence of $\mathcal{L}^{A}(\sigma)$ on X^{μ}, the momenta

$$
\begin{equation*}
P_{\mu}=\int d^{2} \xi p_{\mu}=\frac{1}{2 \lambda^{0}} \iint d \delta d \sigma\left[\Lambda_{0}^{\nu} g_{\mu \nu}+2 \lambda^{0} T_{2} \Lambda_{1}^{\nu}\left(b_{\mu \nu a} Z^{\prime a}+\Lambda_{2}^{\rho} b_{\mu \nu \rho}\right)\right] \tag{3.14}
\end{equation*}
$$

are conserved, i.e. they do not depend on the proper time τ.
In this article, we are interested in obtaining membrane solutions for which the conditions (3.11), (3.12) and $\mathcal{P}_{\mu}^{2}=$ constants are satisfied identically by an appropriate choice of the embedding parameters Λ_{m}^{μ}. Then, the investigation of the membrane dynamics reduces to the problem of solving the equations of motion following from (3.9), which are

$$
\begin{equation*}
K_{a b} Z^{\prime \prime b}+\Gamma_{a, b c}^{K} Z^{\prime b} Z^{\prime c}-2 \partial_{[a} A_{b]} Z^{\prime b}+\frac{1}{2} \partial_{a} U=0 \tag{3.15}
\end{equation*}
$$

where

$$
\Gamma_{a, b c}^{K}=\frac{1}{2}\left(\partial_{b} K_{c a}+\partial_{c} K_{b a}-\partial_{a} K_{b c}\right), \quad \partial_{[a} A_{b]}=\frac{1}{2}\left(\partial_{a} A_{b}-\partial_{b} A_{a}\right),
$$

and the remaining constraint (3.19). Finally, let us note that if the embedding is such that the background seen by the membrane depends on only one coordinate x^{a}, then the constraint (3.10) is first integral of the equation of motion (3.15) for $X^{a}\left(\xi^{m}\right)=Z^{a}(\sigma)$, and the general solution is given by [6]

$$
\begin{equation*}
\sigma\left(X^{a}\right)=\sigma_{0}+\int_{X_{0}^{a}}^{X^{a}}\left(-\frac{K_{a a}}{U}\right)^{1 / 2} d x \tag{3.16}
\end{equation*}
$$

where σ_{0} and X_{0}^{a} are arbitrary constants. Namely this solution will be used in the next section in the following form

$$
\begin{equation*}
\sigma\left(X^{a}\right)=\int_{X_{m i n}^{a}}^{X^{a}}\left(-\frac{K_{a a}}{U}\right)^{1 / 2} d x \tag{3.17}
\end{equation*}
$$

Also, the normalization condition

$$
\begin{equation*}
2 \pi=\int_{0}^{2 \pi} d \sigma=2 \int_{X_{\min }^{a}}^{X_{\max }^{a}}\left(-\frac{K_{a a}}{U}\right)^{1 / 2} d x \tag{3.18}
\end{equation*}
$$

will be imposed, which means that the two periods must be equal.

4. Exact rotating membrane solutions and their semiclassical limits

The M-theory background, which we will use from now on, has the form

$$
\begin{equation*}
l_{11}^{-2} d s_{11}^{2}=-d t^{2}+\delta_{I J} d x^{I} d x^{J}+d s_{7}^{2}, \tag{4.1}
\end{equation*}
$$

where l_{11} is the eleven dimensional Planck length, $(I, J=1,2,3)$ and $d s_{7}^{2}$ is given in (2.1)(2.4). In other words, the background is direct product of flat, four dimensional space-time, and a seven dimensional G_{2} manifold.

As already mentioned above, we will search for solutions, for which the background felt by the membrane depends on only one coordinate. This will be the radial coordinate r, i.e. the rotating membrane embedding along this coordinate has the form $r=r(\sigma)$. Then, according to our ansatz (3.8), the remaining membrane coordinates, which are not fixed, will depend linearly on the worldvolume coordinates τ, δ and σ. The membrane configurations considered below are all for which, we were able to obtain exact solutions under the described conditions.

4.1 First type of membrane embedding

Let us consider the following membrane configuration:

$$
\begin{align*}
& X^{0} \equiv t=\Lambda_{0}^{0} \tau+\frac{1}{\Lambda_{0}^{0}}\left[\left(\boldsymbol{\Lambda}_{0} \cdot \boldsymbol{\Lambda}_{1}\right) \delta+\left(\boldsymbol{\Lambda}_{0} \cdot \boldsymbol{\Lambda}_{2}\right) \sigma\right], \quad X^{I}=\Lambda_{0}^{I} \tau+\Lambda_{1}^{I} \delta+\Lambda_{2}^{I} \sigma, \\
& X^{4} \equiv r(\sigma), \quad X^{6} \equiv \theta=\Lambda_{0}^{6} \tau, \quad X^{9} \equiv \tilde{\theta}=\Lambda_{0}^{9} \tau ; \quad\left(\boldsymbol{\Lambda}_{0} \cdot \boldsymbol{\Lambda}_{i}\right)=\delta_{I J} \Lambda_{0}^{I} \Lambda_{i}^{J} . \tag{4.2}
\end{align*}
$$

It corresponds to membrane extended in the radial direction r, and rotating in the planes given by the angles θ and $\tilde{\theta}$. In addition, it is nontrivially spanned along X^{0} and X^{I}. The relations between the parameters in X^{0} and X^{I} guarantee that the equalities (3.11), (3.12) and $\mathcal{P}_{\mu}^{2}=$ constants are identically satisfied. At the same time, the membrane moves along t-coordinate with constant energy E, and along X^{I} with constant momenta P_{I}. In this case, the target space metric seen by the membrane becomes

$$
\begin{array}{ll}
g_{00} \equiv g_{t t}=-l_{11}^{2}, \quad g_{I J}=l_{11}^{2} \delta_{I J}, & g_{44} \equiv g_{r r}=\frac{l_{11}^{2}}{C^{2}(r)}, \\
g_{66} \equiv g_{\theta \theta}=l_{11}^{2}\left[A^{2}(r)+B^{2}(r)\right], & g_{99} \equiv g_{\tilde{\theta} \tilde{\theta}}=l_{11}^{2}\left[A^{2}(r)+B^{2}(r)\right], \\
g_{69} \equiv g_{\theta \tilde{\theta}}=-l_{11}^{2}\left[A^{2}(r)-B^{2}(r)\right] . \tag{4.3}
\end{array}
$$

Therefore, in the notations introduced in (3.8), we have $\mu=(0, I, 6,9) \equiv(t, I, \theta, \tilde{\theta}), a=$ $4 \equiv r$. The metric induced on the membrane worldvolume is

$$
\begin{aligned}
& G_{00}=-l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{-}\right)^{2} A^{2}-\left(\Lambda_{0}^{+}\right)^{2} B^{2}\right], \\
& G_{11}=l_{11}^{2} M_{11}, \quad G_{12}=l_{11}^{2} M_{12}, \quad G_{22}=l_{11}^{2}\left[M_{22}+\frac{r^{\prime 2}}{C^{2}}\right],
\end{aligned}
$$

where

$$
\begin{equation*}
M_{i j}=\left(\boldsymbol{\Lambda}_{i} \cdot \boldsymbol{\Lambda}_{j}\right)-\frac{\left(\boldsymbol{\Lambda}_{0} \cdot \boldsymbol{\Lambda}_{i}\right)\left(\boldsymbol{\Lambda}_{0} \cdot \boldsymbol{\Lambda}_{j}\right)}{\left(\Lambda_{0}^{0}\right)^{2}}, \quad \Lambda_{0}^{ \pm}=\Lambda_{0}^{6} \pm \Lambda_{0}^{9} \tag{4.4}
\end{equation*}
$$

The constants of the motion \mathcal{P}_{μ}^{2}, introduced in (3.13), are given by

$$
\begin{align*}
& \mathcal{P}_{0}^{2}=-\frac{2 \lambda^{0} T_{2}^{2} l_{11}^{4}}{\Lambda_{0}^{0}}\left[\left(\boldsymbol{\Lambda}_{0} \cdot \boldsymbol{\Lambda}_{1}\right) M_{12}-\left(\boldsymbol{\Lambda}_{0} \cdot \boldsymbol{\Lambda}_{2}\right) M_{11}\right], \tag{4.5}\\
& \mathcal{P}_{I}^{2}=2 \lambda^{0} T_{2}^{2} l_{11}^{4}\left(\Lambda_{1}^{I} M_{12}-\Lambda_{2}^{I} M_{11}\right), \quad \mathcal{P}_{6}^{2}=\mathcal{P}_{9}^{2}=0 .
\end{align*}
$$

The Lagrangian (3.9) takes the form

$$
\begin{aligned}
& \mathcal{L}^{A}(\sigma)=\frac{1}{4 \lambda^{0}}\left(K_{r r} r^{\prime 2}-V\right), \quad K_{r r}=-\left(2 \lambda^{0} T_{2} l_{11}^{2}\right)^{2} \frac{M_{11}}{C^{2}}, \\
& V=\left(2 \lambda^{0} T_{2} l_{11}^{2}\right)^{2} \operatorname{det} M_{i j}+l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{-}\right)^{2} A^{2}-\left(\Lambda_{0}^{+}\right)^{2} B^{2}\right] .
\end{aligned}
$$

Let us first consider the particular case when $\Lambda_{0}^{-}=0$, i.e. $\theta=\tilde{\theta}$. From the yet unsolved constraint (3.10)

$$
K_{r r} r^{\prime 2}+U=0, \quad U=V+4 \lambda^{0} \Lambda_{2}^{\mu} \mathcal{P}_{\mu}^{2}
$$

one obtains the turning points of the effective one-dimensional periodic motion by solving the equation $r^{\prime}=0$. In the case under consideration, the result is

$$
\begin{aligned}
& r_{\min }=3 l, \quad r_{\max }=r_{1}=l\left(2 \sqrt{1+\frac{3 u_{0}^{2}}{l^{2}\left(\Lambda_{0}^{+}\right)^{2}}}+1\right)>3 l, \\
& r_{2}=-l\left(2 \sqrt{1+\frac{3 u_{0}^{2}}{l^{2}\left(\Lambda_{0}^{+}\right)^{2}}}-1\right)<0, \quad l=3 r_{0} / 2,
\end{aligned}
$$

where we have introduced the notation

$$
\begin{align*}
u_{0}^{2} & =\left(2 \lambda^{0} T_{2} l_{11}\right)^{2} \operatorname{det} M_{i j}+\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}+4 \lambda^{0} \Lambda_{2}^{\mu} \mathcal{P}_{\mu}^{2} / l_{11}^{2} \tag{4.6}\\
& =\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(2 \lambda^{0} T_{2} l_{11}\right)^{2} \operatorname{det} M_{i j} .
\end{align*}
$$

Applying the general formula (3.17), we obtain the following expression for the membrane solution $(\Delta r=r-3 l)$

$$
\begin{align*}
& \sigma(r)=\int_{3 l}^{r}\left[-\frac{K_{r r}(t)}{U(t)}\right]^{1 / 2} d t=\frac{16 \lambda^{0} T_{2} l_{11}}{\Lambda_{0}^{+}}\left[\frac{M_{11} l \Delta r}{\left(r_{1}-3 l\right)\left(3 l-r_{2}\right)}\right]^{1 / 2} \times \\
& F_{D}^{(5)}\left(1 / 2 ;-1 / 2,-1 / 2,1 / 2,1 / 2,1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l},-\frac{\Delta r}{3 l-r_{2}}, \frac{\Delta r}{r_{1}-3 l}\right), \tag{4.7}
\end{align*}
$$

where $F_{D}^{(5)}$ is a hypergeometric function of five variables. The definition and some properties of the hypergeometric functions $F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{n}\right)$ are given in appendix A.

The normalization condition (3.18) leads to ($\Delta r_{1}=r_{1}-3 l$)

$$
\begin{aligned}
& 2 \pi=2 \int_{3 l}^{r_{1}}\left[-\frac{K_{r r}(t)}{U(t)}\right]^{1 / 2} d t=\frac{32 \lambda^{0} T_{2} l_{11}\left(M_{11} l\right)^{1 / 2}}{\Lambda_{0}^{+}\left(3 l-r_{2}\right)^{1 / 2}} \times \\
& F_{D}^{(5)}\left(1 / 2 ;-1 / 2,-1 / 2,1 / 2,1 / 2,1 / 2 ; 3 / 2 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}, 1\right)=
\end{aligned}
$$

$$
\begin{align*}
& \frac{16 \pi \lambda^{0} T_{2} l_{11}\left(M_{11} l\right)^{1 / 2}}{\Lambda_{0}^{+}\left(3 l-r_{2}\right)^{1 / 2}} F_{D}^{(4)}\left(1 / 2 ;-1 / 2,-1 / 2,1 / 2,1 / 2, ; 1 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{16 \pi \lambda^{0} T_{2} l_{11}\left(M_{11} l\right)^{1 / 2}}{\Lambda_{0}^{+}\left(3 l-r_{2}\right)^{1 / 2}}\left(1+\frac{\Delta r_{1}}{2 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{4 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{6 l}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \\
& \times F_{D}^{(4)}\left(1 / 2 ;-1 / 2,-1 / 2,1 / 2,1 / 2, ; 1 ; \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right) . \tag{4.8}
\end{align*}
$$

Now, we can compute the conserved momenta on the obtained solution. According to (3.14), they are:

$$
\begin{align*}
& E=-P_{0}=\frac{\pi^{2} l_{11}^{2}}{\lambda^{0}} \Lambda_{0}^{0}, \quad \mathbf{P}=\frac{\pi^{2} l_{11}^{2}}{\lambda^{0}} \boldsymbol{\Lambda}_{0}, \tag{4.9}\\
& P_{\theta}=P_{\tilde{\theta}}=\frac{\pi l_{11}^{2}}{\lambda^{0}} \Lambda_{0}^{+} \int_{3 l}^{r_{1}}\left[-\frac{K_{r r}(t)}{U(t)}\right]^{1 / 2} B^{2}(t) d t=\frac{4 \pi^{2} T_{2} l_{11}^{3}\left(M_{11} l^{3}\right)^{1 / 2}}{3\left(3 l-r_{2}\right)^{1 / 2}} \times \\
& \Delta r_{1} F_{D}^{(4)}\left(3 / 2 ;-1 / 2,-3 / 2,1 / 2,1 / 2, ; 2 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{4 \pi^{2} T_{2} l_{11}^{3}\left(M_{11} l^{3}\right)^{1 / 2}}{3\left(3 l-r_{2}\right)^{1 / 2}} \Delta r_{1}\left(1+\frac{\Delta r_{1}}{2 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{4 l}\right)^{3 / 2}\left(1+\frac{\Delta r_{1}}{6 l}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \\
& \times F_{D}^{(4)}\left(1 / 2 ;-1 / 2,-3 / 2,1 / 2,1 / 2, ; 2 ; \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{\left.1+\frac{6 l}{\Delta r_{1}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right)}\right. \tag{4.10}
\end{align*}
$$

Our next task is to find the relation between the energy E and the other conserved quantities $\mathbf{P}, P_{\theta}=P_{\tilde{\theta}}$ in the semiclassical limit (large conserved charges). This corresponds to $r_{1} \rightarrow \infty$, which in the present case leads to $3 u_{0}^{2} /\left[l^{2}\left(\Lambda_{0}^{+}\right)^{2}\right] \rightarrow \infty$. In this limit, the condition (4.8) reduces to

$$
\Lambda_{0}^{+}=2 \sqrt{3} \lambda^{0} T_{2} l_{11} M_{11}^{1 / 2},
$$

while the expression (4.10) for the momentum P_{θ}, takes the form

$$
P_{\theta}=P_{\tilde{\theta}}=\sqrt{3} \pi^{2} T_{2} l_{11}^{3} M_{11}^{1 / 2} \frac{u_{0}^{2}}{\left(\Lambda_{0}^{+}\right)^{2}} .
$$

Combining these results with (4.9), one obtains

$$
\begin{align*}
& \left\{E^{2}\left(E^{2}-\mathbf{P}^{2}\right)-\left(2 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left\{\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right)^{2} E^{2}-\left[\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right) \times \mathbf{P}\right]^{2}\right\}\right\}^{2} \tag{4.11}\\
& -\left(4 \sqrt{3} \pi^{2} T_{2} l_{11}^{3}\right)^{2} E^{2}\left[\boldsymbol{\Lambda}_{1}^{2} E^{2}-\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right] P_{\theta}^{2}=0, \quad\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right)_{I}=\varepsilon_{I J K} \Lambda_{1}^{J} \Lambda_{2}^{K} .
\end{align*}
$$

This is fourth order algebraic equation for E^{2}. Its positive solutions give the explicit dependence of the energy on \mathbf{P} and $P_{\theta}: E^{2}=E^{2}\left(\mathbf{P}, P_{\theta}\right)$.

Let us consider a few particular cases. In the simplest case, when $\Lambda_{0}^{I}=0$, i.e. $\mathbf{P}=0$, and $\Lambda_{2}^{I}=c \Lambda_{1}^{I}$, which corresponds to the membrane embedding (see (4.2))

$$
X^{0} \equiv t=\Lambda_{0}^{0} \tau, \quad X^{I}=\Lambda_{1}^{I}(\delta+c \sigma), \quad X^{4} \equiv r(\sigma), \quad X^{6} \equiv \theta=\Lambda_{0}^{6} \tau=X^{9} \equiv \tilde{\theta}=\Lambda_{0}^{9} \tau,
$$

(4.11) simplifies to

$$
\begin{equation*}
E^{2}=4 \sqrt{3} \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right| P_{\theta} \tag{4.12}
\end{equation*}
$$

This is the relation $E \sim K^{1 / 2}$ obtained for G_{2}-manifolds in [5]. If we impose only the conditions $\Lambda_{0}^{I}=0$, and Λ_{i}^{I} remain independent, (4.11) gives

$$
\begin{equation*}
E^{2}=\left(2 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right)^{2}+4 \sqrt{3} \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right| P_{\theta} . \tag{4.13}
\end{equation*}
$$

Now, let us take $\Lambda_{0}^{I} \neq 0, \Lambda_{2}^{I}=c \Lambda_{1}^{I}$. Then, (4.11) reduces to

$$
E^{2}\left[\left(E^{2}-\mathbf{P}^{2}\right)^{2}-\left(4 \sqrt{3} \pi^{2} T_{2} l_{11}^{3}\right)^{2} \boldsymbol{\Lambda}_{1}^{2} P_{\theta}^{2}\right]+\left(4 \sqrt{3} \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2} P_{\theta}^{2}=0
$$

which is third order algebraic equation for E^{2}. If the three-dimensional vectors $\boldsymbol{\Lambda}_{1}$ and \mathbf{P} are orthogonal to each other, i.e. $\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)=0$, the above relation simplifies to

$$
\begin{equation*}
E^{2}=\mathbf{P}^{2}+4 \sqrt{3} \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right| P_{\theta} \tag{4.14}
\end{equation*}
$$

The obvious conclusion is that in the framework of a given embedding, one can obtain different relations between the energy and the other conserved charges, depending on the choice of the embedding parameters.

Now, we will consider the general case, when $\Lambda_{0}^{-} \neq 0$, i.e. $\theta \neq \tilde{\theta}$. The turning points are given by

$$
\begin{aligned}
& r_{\text {min }}=3 l, \quad r_{\text {max }}=r_{1}=l\left[2 \sqrt{\frac{k^{2}+3}{4}+\frac{3 u_{0}^{2}}{l^{2}\left(\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right)}}+k\right], \\
& r_{2}=-l\left[2 \sqrt{\frac{k^{2}+3}{4}+\frac{3 u_{0}^{2}}{l^{2}\left(\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right)}}-k\right], \quad k=\frac{\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}} \in[0,1] .
\end{aligned}
$$

According to (3.17), the solution for $\sigma(r)$ is

$$
\begin{align*}
& \sigma(r)=\int_{3 l}^{r}\left[-\frac{K_{r r}(t)}{U(t)}\right]^{1 / 2} d t=\frac{16 \lambda^{0} T_{2} l_{11}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}}\left[\frac{M_{11} l \Delta r}{\left(r_{1}-3 l\right)\left(3 l-r_{2}\right)}\right]^{1 / 2} \times(4 \tag{4.15}\\
& F_{D}^{(5)}\left(1 / 2 ;-1 / 2,-1 / 2,1 / 2,1 / 2,1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l},-\frac{\Delta r}{3 l-r_{2}}, \frac{\Delta r}{r_{1}-3 l}\right) .
\end{align*}
$$

The normalization condition (3.18) reads

$$
\begin{align*}
& \frac{8 \lambda^{0} T_{2} l_{11}\left(M_{11} l\right)^{1 / 2}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}\left(3 l-r_{2}\right)^{1 / 2}} \times \\
& F_{D}^{(4)}\left(1 / 2 ;-1 / 2,-1 / 2,1 / 2,1 / 2, ; 1 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right)= \\
& \frac{8 \lambda^{0} T_{2} l_{11}\left(M_{11} l\right)^{1 / 2}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}\left(3 l-r_{2}\right)^{1 / 2}} \times \\
& \left(1+\frac{\Delta r_{1}}{2 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{4 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{6 l}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \times \tag{4.16}\\
& F_{D}^{(4)}\left(1 / 2 ;-1 / 2,-1 / 2,1 / 2,1 / 2, ; 1 ; \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{\left.1+\frac{6 l}{\Delta r_{1}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right)=1 .}\right.
\end{align*}
$$

Computing the conserved momenta in accordance with (3.14), one obtains the same expressions for E and \mathbf{P} as in $(4.9)^{3}$, and

$$
\begin{align*}
& \frac{1}{2}\left(P_{\theta}+P_{\tilde{\theta}}\right)=\frac{4 \pi^{2} T_{2} l_{11}^{3} \Lambda_{0}^{+}\left(M_{11} l^{3}\right)^{1 / 2}}{3\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}\left(3 l-r_{2}\right)^{1 / 2}} \times \\
& \Delta r_{1} F_{D}^{(4)}\left(3 / 2 ;-1 / 2,-3 / 2,1 / 2,1 / 2, ; 2 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{4 \pi^{2} T_{2} l_{11}^{3} \Lambda_{0}^{+}\left(M_{11} l^{3}\right)^{1 / 2}}{3\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}\left(3 l-r_{2}\right)^{1 / 2}} \times \\
& \Delta r_{1}\left(1+\frac{\Delta r_{1}}{2 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{4 l}\right)^{3 / 2}\left(1+\frac{\Delta r_{1}}{6 l}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \times \\
& F_{D}^{(4)}\left(1 / 2 ;-1 / 2,-3 / 2,1 / 2,1 / 2, ; 2 ; \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{\left.1+\frac{6 l}{\Delta r_{1}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right)}\right. \tag{4.17}\\
& \frac{1}{2}\left(P_{\theta}-P_{\tilde{\theta}}\right)=\frac{8 \pi^{2} T_{2} l_{11}^{3} \Lambda_{0}^{-}\left(M_{11} l^{5}\right)^{1 / 2}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}\left(3 l-r_{2}\right)^{1 / 2}} \times \\
& F_{D}^{(4)}\left(1 / 2 ;-3 / 2,-1 / 2,-1 / 2,1 / 2, ; 1 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{8 \pi^{2} T_{2} l_{11}^{3} \Lambda_{0}^{-}\left(M_{11} l^{5}\right)^{1 / 2}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}\left(3 l-r_{2}\right)^{1 / 2} \times} \\
& \left(1+\frac{\Delta r_{1}}{2 l}\right)^{3 / 2}\left(1+\frac{\Delta r_{1}}{4 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{6 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \times \\
& F_{D}^{(4)}\left(1 / 2 ;-3 / 2,-1 / 2,-1 / 2,1 / 2, ; 1 ; \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right) .
\end{align*}
$$

$$
\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}=2 \sqrt{3} \lambda^{0} T_{2} l_{11} M_{11}^{1 / 2}
$$

whereas (4.17) and (4.18) take the form

$$
\frac{1}{2}\left(P_{\theta} \pm P_{\tilde{\theta}}\right)=\frac{\sqrt{3} \pi^{2} T_{2} l_{11}^{3} \Lambda_{0}^{ \pm} M_{11}^{1 / 2} u_{0}^{2}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{3 / 2}}
$$

The above expressions, together with (4.9), lead to the following connection between the energy and the conserved momenta

$$
\begin{align*}
& \left\{E^{2}\left(E^{2}-\mathbf{P}^{2}\right)-\left(2 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left\{\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right)^{2} E^{2}-\left[\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right) \times \mathbf{P}\right]^{2}\right\}\right\}^{2} \tag{4.19}\\
& -6\left(2 \pi^{2} T_{2} l_{11}^{3}\right)^{2} E^{2}\left[\boldsymbol{\Lambda}_{1}^{2} E^{2}-\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right]\left(P_{\theta}^{2}+P_{\tilde{\theta}}^{2}\right)=0
\end{align*}
$$

[^2]Obviously, (4.19) is the generalization of (4.11) for the case $P_{\theta} \neq P_{\tilde{\theta}}$ and for $P_{\theta}=P_{\tilde{\theta}}$ coincides with it, as it should be. The particular cases (4.12), (4.13) and (4.14) now generalize to

$$
\begin{align*}
& E^{2}=2 \sqrt{6} \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right|\left(P_{\theta}^{2}+P_{\tilde{\theta}}^{2}\right)^{1 / 2}, \\
& E^{2}=\left(2 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right)^{2}+2 \sqrt{6} \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right|\left(P_{\theta}^{2}+P_{\tilde{\theta}}^{2}\right)^{1 / 2}, \\
& E^{2}=\mathbf{P}^{2}+2 \sqrt{6} \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right|\left(P_{\theta}^{2}+P_{\tilde{\theta}}^{2}\right)^{1 / 2} . \tag{4.20}
\end{align*}
$$

Finally, let us give the semiclassical limit of the membrane solution (4.16), which is

$$
\begin{align*}
\sigma_{\text {scl }}(r)= & \left\{\frac{32\left(4 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left[\boldsymbol{\Lambda}_{1}^{2} E^{2}-\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right]}{27 E^{2}\left(P_{\theta}^{2}+P_{\tilde{\theta}}^{2}\right)}\right\}^{1 / 4}(l \Delta r)^{1 / 2} \tag{4.21}\\
& \times F_{D}^{(3)}\left(1 / 2 ;-1 / 2,-1 / 2,1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l}\right) \\
= & \left\{\frac{32\left(4 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left[\boldsymbol{\Lambda}_{1}^{2} E^{2}-\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right]}{27 E^{2}\left(P_{\theta}^{2}+P_{\tilde{\theta}}^{2}\right)}\right\}^{1 / 4}(l \Delta r)^{1 / 2} \\
& \times\left(1+\frac{\Delta r}{2 l}\right)^{1 / 2}\left(1+\frac{\Delta r}{4 l}\right)^{1 / 2}\left(1+\frac{\Delta r}{6 l}\right)^{-1 / 2} \\
& F_{D}^{(3)}\left(1 ;-1 / 2,-1 / 2,1 / 2, ; 3 / 2 ; \frac{1}{1+\frac{2 l}{\Delta r}}, \frac{1}{1+\frac{4 l}{\Delta r}}, \frac{1}{1+\frac{6 l}{\Delta r}}\right) .
\end{align*}
$$

4.2 Second type of membrane embedding

Let us consider membrane, which is extended along the radial direction r and rotates in the planes defined by the angles θ and $\tilde{\theta}$, with angular momenta P_{θ} and $P_{\tilde{\theta}}$. Now we want to have nontrivial wrapping along X^{6} and X^{9}. The embedding parameters in X^{6} and X^{9} have to be chosen in such a way that the constraints (3.11), (3.12) and the equalities $\mathcal{P}_{\mu}^{2}=$ constants are identically satisfied. It turns out that the angular momenta P_{θ} and $P_{\tilde{\theta}}$ must be equal, and the constants of the motion \mathcal{P}_{μ}^{2} are identically zero for this case. In addition, we want the membrane to move along X^{0} and X^{I} with constant energy E and constant momenta P_{I} respectively. All this leads to the following ansatz:

$$
\begin{array}{ll}
X^{0} \equiv t=\Lambda_{0}^{0} \tau, \quad X^{I}=\Lambda_{0}^{I} \tau, & X^{4} \equiv r(\sigma), \\
X^{6} \equiv \theta=\Lambda_{0}^{6} \tau+\Lambda_{1}^{6} \delta+\Lambda_{2}^{6} \sigma, & X^{9} \equiv \tilde{\theta}=\Lambda_{0}^{6} \tau-\left(\Lambda_{1}^{6} \delta+\Lambda_{2}^{6} \sigma\right) . \tag{4.22}
\end{array}
$$

The background felt by the membrane is the same as in (4.3), but the metric induced on the membrane worldvolume is different and is given by

$$
\begin{aligned}
& G_{00}=-l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{+}\right)^{2} B^{2}\right], \quad G_{11}=4 l_{11}^{2}\left(\Lambda_{1}^{6}\right)^{2} A^{2}, \\
& G_{12}=4 l_{11}^{2} \Lambda_{1}^{6} \Lambda_{2}^{6} A^{2}, \quad G_{22}=l_{11}^{2}\left[\frac{r^{\prime 2}}{C^{2}}+4\left(\Lambda_{2}^{6}\right)^{2} A^{2}\right] .
\end{aligned}
$$

For the present case, the Lagrangian (3.9) reduces to

$$
\begin{aligned}
& \mathcal{L}^{A}(\sigma)=\frac{1}{4 \lambda^{0}}\left(K_{r r} r^{2}-V\right), \quad K_{r r}=-\left(4 \lambda^{0} T_{2} l_{11}^{2}\right)^{2}\left(\Lambda_{1}^{6}\right)^{2} \frac{A^{2}}{C^{2}} \\
& V=U=l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{+}\right)^{2} B^{2}\right]
\end{aligned}
$$

The turning points of the effective one-dimensional periodic motion, obtained from the remaining constraint (3.10)

$$
K_{r r} r^{\prime 2}+V=0
$$

are given by

$$
\begin{align*}
& r_{\min }=3 l, \quad r_{\max }=r_{1}=l\left(2 \sqrt{1+\frac{3 v_{0}^{2}}{l^{2}\left(\Lambda_{0}^{+}\right)^{2}}}+1\right)>3 l \\
& r_{2}=-l\left(2 \sqrt{1+\frac{3 v_{0}^{2}}{l^{2}\left(\Lambda_{0}^{+}\right)^{2}}}-1\right)<0, \quad v_{0}^{2}=\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2} \tag{4.23}
\end{align*}
$$

Replacing the above expressions for $K_{r r}$ and V in (3.17), we obtain the membrane solution:

$$
\begin{align*}
& \sigma(r)=\int_{3 l}^{r}\left[-\frac{K_{r r}(t)}{V(t)}\right]^{1 / 2} d t=\frac{32 \lambda^{0} T_{2} l_{11} \Lambda_{1}^{6}}{\Lambda_{0}^{+}}\left[\frac{l^{3} \Delta r}{\left(r_{1}-3 l\right)\left(3 l-r_{2}\right)}\right]^{1 / 2} \times \\
& F_{D}^{(4)}\left(1 / 2 ;-1,-1 / 2,1 / 2,1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{3 l-r_{2}}, \frac{\Delta r}{r_{1}-3 l}\right) \tag{4.24}
\end{align*}
$$

The normalization condition (3.18) leads to the following relation between the parameters

$$
\begin{align*}
& \frac{16 \lambda^{0} T_{2} l_{11} \Lambda_{1}^{6} l^{3 / 2}}{\Lambda_{0}^{+}\left(3 l-r_{2}\right)^{1 / 2}} F_{D}^{(3)}\left(1 / 2 ;-1,-1 / 2,1 / 2 ; 1 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{16 \lambda^{0} T_{2} l_{11} \Lambda_{1}^{6} l^{3 / 2}}{\Lambda_{0}^{+}\left(3 l-r_{2}\right)^{1 / 2}}\left(1+\frac{\Delta r_{1}}{2 l}\right)\left(1+\frac{\Delta r_{1}}{4 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \\
& \times F_{D}^{(3)}\left(1 / 2 ;-1,-1 / 2,1 / 2, ; 1 ; \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right)=1 . \tag{4.25}
\end{align*}
$$

In the case under consideration, the conserved quantities are E, \mathbf{P} and $P_{\theta}=P_{\tilde{\theta}}$. By using (3.14), we derive the following result for $P_{\theta}=P_{\tilde{\theta}}$

$$
\begin{align*}
& P_{\theta}=P_{\tilde{\theta}}=\frac{8 \pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{6} l^{5 / 2}}{3\left(3 l-r_{2}\right)^{1 / 2}} \Delta r_{1} F_{D}^{(3)}\left(3 / 2 ;-1,-3 / 2,1 / 2 ; 2 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{8 \pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{6} l^{5 / 2}}{3\left(3 l-r_{2}\right)^{1 / 2}} \Delta r_{1}\left(1+\frac{\Delta r_{1}}{2 l}\right)\left(1+\frac{\Delta r_{1}}{4 l}\right)^{3 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \\
& \times F_{D}^{(3)}\left(1 / 2 ;-1,-3 / 2,1 / 2, ; 2 ; \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right) \tag{4.26}
\end{align*}
$$

In the semiclassical limit, (4.25) and (4.26) reduce to

$$
\left(\Lambda_{0}^{+}\right)^{2}=\frac{8 \sqrt{3}}{\pi} \lambda^{0} T_{2} l_{11} \Lambda_{1}^{6}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}\right]^{1 / 2}, \quad P_{\theta}=P_{\tilde{\theta}}=\frac{16 \pi T_{2} l_{11}^{3} \Lambda_{1}^{6}}{\sqrt{3}\left(\Lambda_{0}^{+}\right)^{3}}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}\right]^{3 / 2}
$$

From here and (4.9), one obtains the relation

$$
\begin{equation*}
E^{2}=\mathbf{P}^{2}+3^{5 / 3}\left(2 \pi T_{2} l_{11}^{3} \Lambda_{1}^{6}\right)^{2 / 3} P_{\theta}^{4 / 3} \tag{4.27}
\end{equation*}
$$

In the particular case when $\mathbf{P}=0$, (4.27) coincides with the energy-charge relation $E \sim K^{2 / 3}$, first obtained for G_{2}-manifolds in [5]. For the given embedding (4.22), the semiclassical limit of the membrane solution (4.24) is as follows

$$
\begin{align*}
& \sigma_{s c l}(r)=8 \pi^{1 / 3}\left(\frac{2 \pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{6}}{9 P_{\theta}}\right)^{2 / 3}\left(l^{3} \Delta r\right)^{1 / 2} F_{D}^{(2)}\left(1 / 2 ;-1,-1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l}\right) \\
& =8 \pi^{1 / 3}\left(\frac{2 \pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{6}}{9 P_{\theta}}\right)^{2 / 3}\left(l^{3} \Delta r\right)^{1 / 2}\left(1+\frac{\Delta r}{2 l}\right)\left(1+\frac{\Delta r}{4 l}\right)^{1 / 2} \tag{4.28}\\
& \times F_{D}^{(2)}\left(1 ;-1,-1 / 2 ; 3 / 2 ; \frac{1}{1+\frac{2 l}{\Delta r}}, \frac{1}{1+\frac{4 l}{\Delta r}}\right)
\end{align*}
$$

4.3 Third type of membrane embedding

Again, we want the membrane to move in the flat, four dimensional part of the eleven dimensional background metric (4.1), with constant energy E and constant momenta P_{I}. On the curved part of the metric, the membrane is extended along the radial coordinate r, rotates in the plane given by the angle $\psi_{+}=\psi+\tilde{\psi}$, and is wrapped along the angular coordinate $\psi_{-}=\psi-\tilde{\psi}$. This membrane configuration is given by

$$
\begin{align*}
& X^{0} \equiv t=\Lambda_{0}^{0} \tau, \quad X^{I}=\Lambda_{0}^{I} \tau, \quad X^{4} \equiv r(\sigma) \\
& \psi_{+}=\Lambda_{0}^{+} \tau, \quad \psi_{-}=\Lambda_{1}^{-} \delta+\Lambda_{2}^{-} \sigma, \quad \psi_{ \pm}=\psi \pm \tilde{\psi} \tag{4.29}
\end{align*}
$$

In this case, the target space metric seen by the membrane is

$$
\begin{align*}
& g_{00} \equiv g_{t t}=-l_{11}^{2}, \quad g_{I J}=l_{11}^{2} \delta_{I J}, \quad g_{44} \equiv g_{r r}=\frac{l_{11}^{2}}{C^{2}(r)} \\
& g_{++}=l_{11}^{2}\left(\frac{2 l}{3}\right)^{2} C^{2}(r), \quad g_{--}=l_{11}^{2} D^{2}(r) \tag{4.30}
\end{align*}
$$

Hence, in the notations introduced in (3.8), we have $\mu=(0, I,+,-), a=4 \equiv r$. Now, the metric induced on the membrane worldvolume is

$$
\begin{aligned}
& G_{00}=-l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2} C^{2}\right] \\
& G_{11}=l_{11}^{2}\left(\Lambda_{1}^{-}\right)^{2} D^{2}, \quad G_{12}=l_{11}^{2} \Lambda_{1}^{-} \Lambda_{2}^{-} D^{2}, \quad G_{22}=l_{11}^{2}\left[\left(\Lambda_{2}^{-}\right)^{2} D^{2}+\frac{r^{\prime 2}}{C^{2}}\right] .
\end{aligned}
$$

The constraints (3.11), (3.12) are satisfied identically, and $\mathcal{P}_{\mu}^{2} \equiv 0$. The Lagrangian (3.9) takes the form

$$
\begin{aligned}
& \mathcal{L}^{A}(\sigma)=\frac{1}{4 \lambda^{0}}\left(K_{r r} r^{\prime 2}-V\right), \quad K_{r r}=-\left(2 \lambda^{0} T_{2} l_{11}^{2} \Lambda_{1}^{-}\right)^{2} \frac{D^{2}}{C^{2}}, \\
& V=U=l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2} C^{2}\right] .
\end{aligned}
$$

The turning points, obtained from (3.10), read

$$
\begin{aligned}
& r_{\min }=3 l, \quad r_{\max }=r_{1}=l \sqrt{1+\frac{8}{1-\frac{9 v_{0}^{2}}{4 l^{2}\left(\Lambda_{0}^{+}\right)^{2}}}}>3 l, \\
& r_{2}=-l \sqrt{1+\frac{8}{1-\frac{9 v_{0}^{2}}{4 l^{2}\left(\Lambda_{0}^{+}\right)^{2}}}}<0, \quad v_{0}^{2}=\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2} .
\end{aligned}
$$

For the present embedding, we derive the following membrane solution

$$
\begin{align*}
& \sigma(r)=\int_{3 l}^{r}\left[-\frac{K_{r r}(t)}{V(t)}\right]^{1 / 2} d t=\frac{2 \lambda^{0} T_{2} l_{11} \Lambda_{1}^{-}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-v_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{7} l^{5} \Delta r}{3\left(r_{1}-3 l\right)\left(3 l-r_{2}\right)}\right]^{1 / 2} \times(4.31) \tag{4.31}\\
& F_{D}^{(6)}\left(1 / 2 ;-1,-1,-1,1 / 2,1 / 2,1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{3 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l},-\frac{\Delta r}{3 l-r_{2}}, \frac{\Delta r}{r_{1}-3 l}\right) .
\end{align*}
$$

The normalization condition (3.18) leads to

$$
\begin{align*}
& \frac{\lambda^{0} T_{2} l_{11} \Lambda_{1}^{-}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-v_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{7} l^{5}}{3\left(3 l-r_{2}\right)}\right]^{1 / 2} \times \tag{4.32}\\
& F_{D}^{(5)}\left(1 / 2 ;-1,-1,-1,1 / 2,1 / 2 ; 1 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{3 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right)= \\
& \frac{\lambda^{0} T_{2} l_{11} \Lambda_{1}^{-}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-v_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{7} l^{5}}{3\left(3 l-r_{2}\right)}\right]^{1 / 2} \times \\
& \left(1+\frac{\Delta r_{1}}{2 l}\right)\left(1+\frac{\Delta r_{1}}{3 l}\right)\left(1+\frac{\Delta r_{1}}{4 l}\right)\left(1+\frac{\Delta r_{1}}{6 l}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \times \\
& F_{D}^{(5)}\left(1 / 2 ;-1,-1,-1,1 / 2,1 / 2, ; 1 ; \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{\left.1+\frac{3 l}{\Delta r_{1}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right)=1 .}\right.
\end{align*}
$$

The computation of the conserved momentum $P_{+} \equiv P_{\psi_{+}}$in accordance with (3.14) gives

$$
\begin{align*}
& P_{+}=\frac{\pi^{2} T_{2} l_{11}^{3} \Lambda_{0}^{+} \Lambda_{1}^{-}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-v_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{5} l^{7}}{3^{3}\left(3 l-r_{2}\right)}\right]^{1 / 2} \times \tag{4.33}\\
& \Delta r_{1} F_{D}^{(3)}\left(3 / 2 ;-1,-1 / 2,1 / 2 ; 2 ;-\frac{\Delta r_{1}}{3 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right)=
\end{align*}
$$

$$
\begin{aligned}
& \frac{\pi^{2} T_{2} l_{11}^{3} \Lambda_{0}^{+} \Lambda_{1}^{-}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-v_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{5} l^{7}}{3^{3}\left(3 l-r_{2}\right)}\right]^{1 / 2} \times \\
& \Delta r_{1}\left(1+\frac{\Delta r_{1}}{3 l}\right)\left(1+\frac{\Delta r_{1}}{6 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \times \\
& F_{D}^{(3)}\left(1 / 2 ;-1,-1 / 2,1 / 2 ; 2 ; \frac{1}{1+\frac{3 l}{\Delta r_{1}}}, \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right) .
\end{aligned}
$$

Let us note that for the embedding (4.29), the momentum $P_{\psi_{-}}$is zero.
Going to the semiclassical limit $r_{1} \rightarrow \infty$, which in the case under consideration leads to $9 v_{0}^{2} /\left[4 l^{2}\left(\Lambda_{0}^{+}\right)^{2}\right] \rightarrow 1_{-}$, one obtains that (4.32) and (4.33) reduce to

$$
\Lambda_{0}^{+}\left[1-\frac{9 v_{0}^{2}}{4 l^{2}\left(\Lambda_{0}^{+}\right)^{2}}\right]^{3 / 2}=2 \lambda^{0} T_{2} l_{11} \Lambda_{1}^{-} l, \quad P_{+}=\frac{2^{5 / 2} \pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{-} l^{3}}{9\left[1-\frac{9 v_{0}^{2}}{4 l^{2}\left(\Lambda_{0}^{+}\right)^{2}}\right]^{3 / 2}}
$$

These two equalities, together with (4.9), give the following relation between the energy and the conserved momenta

$$
\begin{equation*}
E^{2}=\mathbf{P}^{2}+\frac{9}{2 l^{2}} P_{+}^{2}-\left(6 \pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{-}\right)^{2 / 3} P_{+}^{4 / 3} . \tag{4.34}
\end{equation*}
$$

In the particular case when $\mathbf{P}=0$, (4.34) can be rewritten as

$$
E=\frac{3}{\sqrt{2} l} P_{+} \sqrt{1-\left(\frac{4 \sqrt{2} \pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{-} l^{3}}{9 P_{+}}\right)^{2 / 3}} .
$$

Expanding the square root and neglecting the higher order terms, one derives energy-charge relation of the type $E-K \sim K^{1 / 3}$, first found for backgrounds of G_{2}-holonomy in [5].

Now, let us write down the semiclassical limit of our membrane solution (4.31):

$$
\begin{align*}
& \sigma_{s c l}(r)=\frac{\pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{-}}{P_{+}}\left(\frac{2^{7} l^{5}}{3^{3}}\right)^{1 / 2} \times \tag{4.35}\\
& \Delta r^{1 / 2} F_{D}^{(4)}\left(1 / 2 ;-1,-1,-1,1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{3 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l}\right)= \\
& \frac{\pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{-}}{P_{+}}\left(\frac{2^{7} l^{5}}{3^{3}}\right)^{1 / 2} \Delta r^{1 / 2}\left(1+\frac{\Delta r}{2 l}\right)\left(1+\frac{\Delta r}{3 l}\right)\left(1+\frac{\Delta r}{4 l}\right)\left(1+\frac{\Delta r}{6 l}\right)^{-1 / 2} \times \\
& F_{D}^{(4)}\left(1 ;-1,-1,-1,1 / 2 ; 3 / 2 ; \frac{1}{1+\frac{2 l}{\Delta r}}, \frac{1}{\left.1+\frac{3 l}{\Delta r}, \frac{1}{1+\frac{4 l}{\Delta r}}, \frac{1}{1+\frac{6 l}{\Delta r}}\right)} .\right.
\end{align*}
$$

4.4 Forth type of membrane embedding

Let us consider membrane configuration given by the following ansatz:

$$
\begin{align*}
& X^{0} \equiv t=\Lambda_{0}^{0} \tau+\frac{1}{\Lambda_{0}^{0}}\left[\left(\boldsymbol{\Lambda}_{0} \cdot \boldsymbol{\Lambda}_{1}\right) \delta+\left(\boldsymbol{\Lambda}_{0} \cdot \boldsymbol{\Lambda}_{2}\right) \sigma\right], \quad X^{I}=\Lambda_{0}^{I} \tau+\Lambda_{1}^{I} \delta+\Lambda_{2}^{I} \sigma, \\
& X^{4} \equiv r(\sigma), \quad \psi_{+}=\Lambda_{0}^{+} \tau, \quad \psi_{-}=\Lambda_{0}^{-} \tau, \quad \psi_{ \pm}=\psi \pm \tilde{\psi} . \tag{4.36}
\end{align*}
$$

It is analogous to (4.2), but now the rotations are in the planes defined by the angles $\psi_{ \pm}=\psi \pm \tilde{\psi}$ instead of θ and $\tilde{\theta}$.

The background felt by the membrane is as given in (4.30). However, the metric induced on the membrane worldvolume is different and it is the following

$$
\begin{aligned}
& G_{00}=-l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2} C^{2}-\left(\Lambda_{0}^{-}\right)^{2} D^{2}\right] \\
& G_{11}=l_{11}^{2} M_{11}, \quad G_{12}=l_{11}^{2} M_{12}, \quad G_{22}=l_{11}^{2}\left[M_{22}+\frac{r^{\prime 2}}{C^{2}}\right],
\end{aligned}
$$

where $M_{i j}$ are defined in (4.4). The constraints (3.11), (3.12) are identically satisfied, and the constants of the motion \mathcal{P}_{μ}^{2} are given by (4.5). The Lagrangian (3.9) now takes the form

$$
\begin{aligned}
& \mathcal{L}^{A}(\sigma)=\frac{1}{4 \lambda^{0}}\left(K_{r r} r^{\prime 2}-V\right), \quad K_{r r}=-\left(2 \lambda^{0} T_{2} l_{11}^{2}\right)^{2} \frac{M_{11}}{C^{2}}, \\
& V=\left(2 \lambda^{0} T_{2} l_{11}^{2}\right)^{2} \operatorname{det} M_{i j}+l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2} C^{2}-\left(\Lambda_{0}^{-}\right)^{2} D^{2}\right] .
\end{aligned}
$$

Let us first consider the particular case when $\Lambda_{0}^{-}=0$, i.e. $\psi=\tilde{\psi}$. The turning points obtained from the constraint (3.19) now are

$$
r_{\min }=3 l, \quad r_{\max }=r_{1}=l \sqrt{1+\frac{8}{1-\frac{9 u_{0}^{2}}{4 l^{2}\left(\Lambda_{0}^{+}\right)^{2}}}}>3 l, \quad r_{2}=-l \sqrt{1+\frac{8}{1-\frac{9 u_{0}^{2}}{4 l^{2}\left(\Lambda_{0}^{+}\right)^{2}}}}<0
$$

where u_{0}^{2} is introduced in (4.6). By using (3.17), one arrives at the following membrane solution

$$
\begin{align*}
& \sigma(r)=\int_{3 l}^{r}\left[-\frac{K_{r r}(t)}{U(t)}\right]^{1 / 2} d t=\frac{2 \lambda^{0} T_{2} l_{11}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-u_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{7} l^{3} M_{11} \Delta r}{3\left(r_{1}-3 l\right)\left(3 l-r_{2}\right)}\right]^{1 / 2} \tag{4.37}\\
& \times F_{D}^{(5)}\left(1 / 2 ;-1,-1,1 / 2,1 / 2,1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l},-\frac{\Delta r}{3 l-r_{2}}, \frac{\Delta r}{r_{1}-3 l}\right) .
\end{align*}
$$

The normalization condition (3.18) now gives

$$
\begin{align*}
& \frac{\lambda^{0} T_{2} l_{11}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-u_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{7} l^{3} M_{11}}{3\left(3 l-r_{2}\right)}\right]^{1 / 2} \times \tag{4.38}\\
& F_{D}^{(4)}\left(1 / 2 ;-1,-1,1 / 2,1 / 2 ; 1 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right)= \\
& \frac{\lambda^{0} T_{2} l_{11}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-u_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{7} l^{3} M_{11}}{3\left(3 l-r_{2}\right)}\right]^{1 / 2} \times \\
& \left(1+\frac{\Delta r_{1}}{2 l}\right)\left(1+\frac{\Delta r_{1}}{4 l}\right)\left(1+\frac{\Delta r_{1}}{6 l}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \times \\
& F_{D}^{(4)}\left(1 / 2 ;-1,-1,1 / 2,1 / 2, ; 1 ; \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{\left.1+\frac{4 l}{\Delta r_{1}}, \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right)=1 .} .\right.
\end{align*}
$$

In accordance with (3.14), we derive for the conserved momentum $P_{+} \equiv P_{\psi_{+}}$the expression ($P_{-} \equiv P_{\psi_{-}}=0$ as a consequence of $\Lambda_{0}^{-}=0$):

$$
\begin{align*}
& P_{+}=\frac{\pi^{2} T_{2} l_{11}^{3} \Lambda_{0}^{+}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-u_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{5} l^{5} M_{11}}{3^{3}\left(3 l-r_{2}\right)}\right]^{1 / 2} \times \\
& \Delta r_{1} F_{D}^{(2)}\left(3 / 2 ;-1 / 2,1 / 2 ; 2 ;-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right)= \\
& \frac{\pi^{2} T_{2} l_{11}^{3} \Lambda_{0}^{+}}{\left[\left(\Lambda_{0}^{+}\right)^{2}\left(\frac{2 l}{3}\right)^{2}-u_{0}^{2}\right]^{1 / 2}}\left[\frac{2^{5} l^{5} M_{11}}{3^{3}\left(3 l-r_{2}\right)}\right]^{1 / 2} \Delta r_{1}\left(1+\frac{\Delta r_{1}}{6 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \times \\
& F_{D}^{(2)}\left(1 / 2 ;-1 / 2,1 / 2 ; 2 ; \frac{1}{\left.1+\frac{6 l}{\Delta r_{1}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right) .}\right. \tag{4.39}
\end{align*}
$$

In the semiclassical limit, (4.38) and (4.39) simplify to

$$
\pi \Lambda_{0}^{+}\left[1-\frac{9 u_{0}^{2}}{4 l^{2}\left(\Lambda_{0}^{+}\right)^{2}}\right]=2^{3 / 2} 3 \lambda^{0} T_{2} l_{11} M_{11}^{1 / 2}, \quad P_{+}=\frac{2^{7 / 2} \pi T_{2} l_{11}^{3} l^{2} M_{11}^{1 / 2}}{3\left[1-\frac{9 u_{0}^{2}}{4 l^{2}\left(\Lambda_{0}^{+}\right)^{2}}\right]} .
$$

Taking also into account (4.9), we obtain the following fourth order algebraic equation for E^{2} as a function of \mathbf{P} and P_{+}

$$
\begin{align*}
& \left\{E^{2}\left[E^{2}-\mathbf{P}^{2}-(3 / l)^{2} P_{+}^{2}\right]-\left(2 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left\{\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right)^{2} E^{2}-\left[\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right) \times \mathbf{P}\right]^{2}\right\}\right\}^{2} \\
& -2^{7}\left(3 \pi T_{2} l_{11}^{3}\right)^{2} E^{2}\left[\boldsymbol{\Lambda}_{1}^{2} E^{2}-\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right] P_{+}^{2}=0 . \tag{4.40}
\end{align*}
$$

Let us consider a few simple cases. When $\Lambda_{0}^{I}=0$ and $\Lambda_{2}^{I}=c \Lambda_{1}^{I}$, (4.40) reduces to

$$
\begin{equation*}
E^{2}=(3 / l)^{2} P_{+}^{2}+2^{7 / 2} 3 \pi T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right| P_{+}, \tag{4.4.4}
\end{equation*}
$$

or

$$
E=\frac{3}{l} P_{+} \sqrt{1+\frac{2^{7 / 2} \pi T_{2} l_{11}^{3} l^{2}\left|\boldsymbol{\Lambda}_{1}\right|}{3 P_{+}}} .
$$

Expanding the square root and neglecting the higher order terms, one derives energy-charge relation of the type $E-K \sim$ const. If we impose only the conditions $\Lambda_{0}^{I}=0$, (4.40) gives

$$
\begin{equation*}
E^{2}=\left(2 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right)^{2}+(3 / l)^{2} P_{+}^{2}+2^{7 / 2} 3 \pi T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right| P_{+} . \tag{4.42}
\end{equation*}
$$

If we take $\Lambda_{0}^{I} \neq 0, \Lambda_{2}^{I}=c \Lambda_{1}^{I}$, (4.40) simplifies to

$$
E^{2}\left\{\left[E^{2}-\mathbf{P}^{2}-(3 / l)^{2} P_{+}^{2}\right]^{2}-2^{7}\left(3 \pi T_{2} l_{11}^{3}\right)^{2} \boldsymbol{\Lambda}_{1}^{2} P_{+}^{2}\right\}+2^{7}\left(3 \pi T_{2} l_{11}^{3}\right)^{2}\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2} P_{+}^{2}=0,
$$

which is third order algebraic equation for E^{2}. Suppose that $\boldsymbol{\Lambda}_{1}$ and \mathbf{P} are orthogonal to each other, i.e. $\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)=0$. Then, the above relation becomes

$$
\begin{equation*}
E^{2}=\mathbf{P}^{2}+(3 / l)^{2} P_{+}^{2}+2^{7 / 2} 3 \pi T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right| P_{+} . \tag{4.43}
\end{equation*}
$$

Finally, we give the semiclassical limit of the membrane solution (4.37)

$$
\begin{aligned}
& \sigma_{s c l}(r)=2 \pi^{2} T_{2} l_{11}^{3}\left(\frac{4 l}{3}\right)^{3 / 2}\left[\Lambda_{1}^{2}-\frac{1}{E^{2}}\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right]^{1 / 2} \frac{\Delta r^{1 / 2}}{P_{+}} \\
& \times F_{D}^{(3)}\left(1 / 2 ;-1,-1,1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l}\right) \\
& =2 \pi^{2} T_{2} l_{11}^{3}\left(\frac{4 l}{3}\right)^{3 / 2}\left[\boldsymbol{\Lambda}_{1}^{2}-\frac{1}{E^{2}}\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right]^{1 / 2} \frac{\Delta r^{1 / 2}}{P_{+}}\left(1+\frac{\Delta r}{2 l}\right)\left(1+\frac{\Delta r}{4 l}\right)\left(1+\frac{\Delta r}{6 l}\right)^{-1 / 2} \\
& \times F_{D}^{(3)}\left(1 ;-1,-1,1 / 2 ; 3 / 2 ; \frac{1}{1+\frac{2 l}{\Delta r}}, \frac{1}{1+\frac{4 l}{\Delta r}}, \frac{1}{1+\frac{6 l}{\Delta r}}\right) .
\end{aligned}
$$

Now, we turn to the case $\Lambda_{0}^{-} \neq 0$, when the solutions of the equation $r^{\prime}=0$ are

$$
\begin{aligned}
& r_{\min }=3 l, \quad r_{\max }=r_{1}=\frac{l}{\sqrt{2}} \sqrt{1+u^{2}-\Lambda^{2}} \sqrt{1+\sqrt{1-\frac{4\left(u^{2}-9 \Lambda^{2}\right)}{\left(1+u^{2}-\Lambda^{2}\right)^{2}}}} \\
& r_{2}=\frac{l}{\sqrt{2}} \sqrt{1+u^{2}-\Lambda^{2}} \sqrt{1-\sqrt{1-\frac{4\left(u^{2}-9 \Lambda^{2}\right)}{\left(1+u^{2}-\Lambda^{2}\right)^{2}}}} \\
& r_{3}=-\frac{l}{\sqrt{2}} \sqrt{1+u^{2}-\Lambda^{2}} \sqrt{1+\sqrt{1-\frac{4\left(u^{2}-9 \Lambda^{2}\right)}{\left(1+u^{2}-\Lambda^{2}\right)^{2}}}} \\
& r_{4}=-\frac{l}{\sqrt{2}} \sqrt{1+u^{2}-\Lambda^{2}} \sqrt{1-\sqrt{1-\frac{4\left(u^{2}-9 \Lambda^{2}\right)}{\left(1+u^{2}-\Lambda^{2}\right)^{2}}}} \\
& u^{2}=\left(\frac{3 u_{0}}{l \Lambda_{0}^{-}}\right)^{2}, \quad \Lambda^{2}=\left(2 \frac{\Lambda_{0}^{+}}{\Lambda_{0}^{-}}\right)^{2} .
\end{aligned}
$$

Correspondingly, we obtain the following solution for $\sigma(r)$:

$$
\begin{align*}
& \sigma(r)=\int_{3 l}^{r}\left[-\frac{K_{r r}(t)}{U(t)}\right]^{1 / 2} d t=\frac{\lambda^{0} T_{2} l_{11}}{\Lambda_{0}^{-}}\left[\frac{2^{9} 3 l^{3} M_{11} \Delta r}{\left(r_{1}-3 l\right)\left(3 l-r_{2}\right)\left(3 l-r_{3}\right)\left(3 l-r_{4}\right)}\right]^{1 / 2} \times \\
& F_{D}^{(7)}(1 / 2 ;-1,-1,1 / 2,1 / 2,1 / 2,1 / 2,1 / 2 ; 3 / 2 \tag{4.44}\\
& \left.-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l},-\frac{\Delta r}{3 l-r_{2}},-\frac{\Delta r}{3 l-r_{3}},-\frac{\Delta r}{3 l-r_{4}}, \frac{\Delta r}{r_{1}-3 l}\right)
\end{align*}
$$

For the normalization condition, we derive the result

$$
\begin{align*}
& \frac{\lambda^{0} T_{2} l_{11}}{\Lambda_{0}^{-}}\left[\frac{2^{7} 3 l^{3} M_{11}}{\left(3 l-r_{2}\right)\left(3 l-r_{3}\right)\left(3 l-r_{4}\right)}\right]^{1 / 2} \times \tag{4.45}\\
& F_{D}^{(6)}(1 / 2 ;-1,-1,1 / 2,1 / 2,1 / 2,1 / 2 ; 1 ; \\
& \left.-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}},-\frac{\Delta r_{1}}{3 l-r_{3}},-\frac{\Delta r_{1}}{3 l-r_{4}}\right)= \\
& \frac{\lambda^{0} T_{2} l_{11}}{\Lambda_{0}^{-}}\left[\frac{2^{7} 3 l^{3} M_{11}}{\left(3 l-r_{2}\right)\left(3 l-r_{3}\right)\left(3 l-r_{4}\right)}\right]^{1 / 2}\left(1+\frac{\Delta r}{2 l}\right)\left(1+\frac{\Delta r}{4 l}\right)\left(1+\frac{\Delta r}{6 l}\right)^{-1 / 2} \times
\end{align*}
$$

$$
\begin{aligned}
& \left(1+\frac{\Delta r}{3 l-r_{2}}\right)^{-1 / 2}\left(1+\frac{\Delta r}{3 l-r_{3}}\right)^{-1 / 2}\left(1+\frac{\Delta r}{3 l-r_{4}}\right)^{-1 / 2} \times \\
& F_{D}^{(6)}(1 / 2 ;-1,-1,1 / 2,1 / 2,1 / 2,1 / 2 ; 1 ; \\
& \left.\frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{3}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{4}}{\Delta r_{1}}}\right)=1 .
\end{aligned}
$$

The computation of the conserved quantities P_{+}and P_{-}gives

$$
\begin{align*}
& P_{+}=\pi^{2} T_{2} l_{11}^{3} \frac{\Lambda_{0}^{+}}{\Lambda_{0}^{-}}\left[\frac{2^{5} l^{5} M_{11}}{3\left(3 l-r_{2}\right)\left(3 l-r_{3}\right)\left(3 l-r_{4}\right)}\right]^{1 / 2} \Delta r_{1} \times \tag{4.46}\\
& F_{D}^{(4)}\left(3 / 2 ;-1 / 2,1 / 2,1 / 2,1 / 2 ; 2 ;-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}},-\frac{\Delta r_{1}}{3 l-r_{3}},-\frac{\Delta r_{1}}{3 l-r_{4}}\right)= \\
& \pi^{2} T_{2} l_{11}^{3} \frac{\Lambda_{0}^{+}}{\Lambda_{0}^{-}}\left[\frac{2^{5} l^{5} M_{11}}{3\left(3 l-r_{2}\right)\left(3 l-r_{3}\right)\left(3 l-r_{4}\right)}\right]^{1 / 2} \times \\
& \Delta r_{1}\left(1+\frac{\Delta r_{1}}{6 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{3}}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{4}}\right)^{-1 / 2} \times \\
& F_{D}^{(4)}\left(1 / 2 ;-1 / 2,1 / 2,1 / 2,1 / 2 ; 2 ; \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{3}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{4}}{\Delta r_{1}}}\right), \\
& P_{-}=\pi^{2} T_{2} l_{11}^{3}\left[\frac{2^{7} 3 l^{7} M_{11}}{\left(3 l-r_{2}\right)\left(3 l-r_{3}\right)\left(3 l-r_{4}\right)}\right]^{1 / 2} \times \tag{4.47}\\
& F_{D}^{(7)}(1 / 2 ;-1,-2,-1,1 / 2,1 / 2,1 / 2,1 / 2 ; 1 \text {; } \\
& \left.-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{3 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}},-\frac{\Delta r_{1}}{3 l-r_{3}},-\frac{\Delta r_{1}}{3 l-r_{4}}\right)= \\
& \pi^{2} T_{2} l_{11}^{3}\left[\frac{2^{7} 3 l^{7} M_{11}}{\left(3 l-r_{2}\right)\left(3 l-r_{3}\right)\left(3 l-r_{4}\right)}\right]^{1 / 2} \times \\
& \left(1+\frac{\Delta r_{1}}{2 l}\right)\left(1+\frac{\Delta r_{1}}{3 l}\right)^{2}\left(1+\frac{\Delta r_{1}}{4 l}\right)\left(1+\frac{\Delta r_{1}}{6 l}\right)^{-1 / 2} \times \\
& \left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{3}}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{4}}\right)^{-1 / 2} \times \\
& F_{D}^{(7)}(1 / 2 ;-1,-2,-1,1 / 2,1 / 2,1 / 2,1 / 2 ; 1 \text {; } \\
& \left.\frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{3}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{4}}{\Delta r_{1}}}\right) .
\end{align*}
$$

Let us now take the semiclassical limit $r_{1} \rightarrow \infty$. In this limit, (4.45), (4.46) and (4.47) reduce correspondingly to

$$
\begin{aligned}
& \Lambda_{0}^{-}=3 \lambda^{0} T_{2} l_{11} M_{11}^{1 / 2}, \quad P_{+}=\frac{4}{3} \pi^{2} T_{2} l_{11}^{3} l^{2} M_{11}^{1 / 2} \frac{\Lambda_{0}^{+}}{\Lambda_{0}^{-}} \\
& P_{-}=\frac{1}{6} \pi^{2} T_{2} l_{11}^{3} l^{2} M_{11}^{1 / 2}\left[\left(\frac{3 u_{0}}{l \Lambda_{0}^{-}}\right)^{2}-\left(2 \frac{\Lambda_{0}^{+}}{\Lambda_{0}^{-}}\right)^{2}\right] .
\end{aligned}
$$

These equalities, together with (4.9), lead to the following relation between the energy E and the conserved charges \mathbf{P}, P_{+}and P_{-}:

$$
\begin{align*}
& \left\{E^{2}\left[E^{2}-\mathbf{P}^{2}-(3 / 2 l)^{2} P_{+}^{2}\right]-\left(2 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left\{\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right)^{2} E^{2}-\left[\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right) \times \mathbf{P}\right]^{2}\right\}\right\}^{2} \\
& -\left(6 \pi^{2} T_{2} l_{11}^{3}\right)^{2} E^{2}\left[\boldsymbol{\Lambda}_{1}^{2} E^{2}-\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right] P_{-}^{2}=0 . \tag{4.48}
\end{align*}
$$

We remind the reader that the above relation is only valid for $P_{-} \neq 0$, whereas we can always set \mathbf{P} or P_{+}equal to zero. Below, we give a few simple solutions of (4.48).

Choosing $\Lambda_{0}^{I}=0$ and $\Lambda_{2}^{I}=c \Lambda_{1}^{I}$, one obtains

$$
\begin{equation*}
E^{2}=(3 / 2 l)^{2} P_{+}^{2}+6 \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right| P_{-}, \tag{4.49}
\end{equation*}
$$

which can be rewritten as

$$
E=\frac{3}{2 l} P_{+} \sqrt{1+\frac{8 \pi^{2} T_{2} l_{11}^{3} l^{2}\left|\boldsymbol{\Lambda}_{1}\right| P_{-}}{3 P_{+}^{2}}} .
$$

Expanding the square root and neglecting the higher order terms, one arrives at

$$
E=\frac{3}{2 l} P_{+}+2 \pi^{2} T_{2} l_{11}^{3} l\left|\boldsymbol{\Lambda}_{1}\right| \frac{P_{-}}{P_{+}} .
$$

If only the conditions $\Lambda_{0}^{I}=0$ are imposed, (4.48) gives

$$
\begin{equation*}
E^{2}=\left(2 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left(\boldsymbol{\Lambda}_{1} \times \boldsymbol{\Lambda}_{2}\right)^{2}+(3 / 2 l)^{2} P_{+}^{2}+6 \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right| P_{-} . \tag{4.50}
\end{equation*}
$$

If we choose $\Lambda_{0}^{I} \neq 0, \Lambda_{2}^{I}=c \Lambda_{1}^{I}$, then (4.48) simplifies to a third order algebraic equation for E^{2}

$$
E^{2}\left\{\left[E^{2}-\mathbf{P}^{2}-(3 / 2 l)^{2} P_{+}^{2}\right]^{2}-\left(6 \pi^{2} T_{2} l_{11}^{3}\right)^{2} \boldsymbol{\Lambda}_{1}^{2} P_{-}^{2}\right\}+\left(6 \pi^{2} T_{2} l_{11}^{3}\right)^{2}\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2} P_{-}^{2}=0
$$

If $\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)=0$, the above relation reduces to

$$
\begin{equation*}
E^{2}=\mathbf{P}^{2}+(3 / 2 l)^{2} P_{+}^{2}+6 \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right| P_{-} . \tag{4.51}
\end{equation*}
$$

Finally, let us write down the semiclassical limit of the membrane solution (4.44):

$$
\begin{aligned}
& \sigma_{s c l}(r)=\left(\frac{2^{8} \pi^{2} T_{2} l_{11}^{3} l}{3^{4} P_{-}}\right)^{1 / 2}\left[\boldsymbol{\Lambda}_{1}^{2}-\frac{1}{E^{2}}\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right]^{1 / 4} \Delta r^{1 / 2} \\
& \times F_{D}^{(4)}\left(1 / 2 ;-1,1,-1,1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{3 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l}\right) \\
& =\left(\frac{2^{8} \pi^{2} T_{2} l_{11}^{3} l}{3^{4} P_{-}}\right)^{1 / 2}\left[\boldsymbol{\Lambda}_{1}^{2}-\frac{1}{E^{2}}\left(\boldsymbol{\Lambda}_{1} \cdot \mathbf{P}\right)^{2}\right]^{1 / 4} \\
& \times \Delta r^{1 / 2}\left(1+\frac{\Delta r}{2 l}\right)\left(1+\frac{\Delta r}{3 l}\right)^{-1}\left(1+\frac{\Delta r}{4 l}\right)\left(1+\frac{\Delta r}{6 l}\right)^{-1 / 2} \\
& \times F_{D}^{(4)}\left(1 ;-1,1,-1,1 / 2 ; 3 / 2 ; \frac{1}{1+\frac{2 l}{\Delta r}}, \frac{1}{1+\frac{3 l}{\Delta r}}, \frac{1}{\left.1+\frac{4 l}{\Delta r}, \frac{1}{1+\frac{6 l}{\Delta r}}\right) .}\right.
\end{aligned}
$$

Concluding this section, we note that more membrane solutions are given in appendix B. The reason is that although different, they exhibit the same semiclassical behavior as some of the solutions described here. Namely, they lead to the same dependence of the energy on the conserved charges in this limit.

5. Concluding remarks

In this paper, we considered the membrane dynamics on a manifold with exactly known metric of G_{2}-holonomy in M-theory. More precisely, we obtained exact rotating membrane solutions and explicit expressions for the energy E and the other momenta (charges), which are conserved due to the presence of background isometries. They were given in terms of the hypergeometric functions of many variables $F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{n}\right)$, where for the different membrane configurations considered, n varies from two to seven.

In connection with the dual four dimensional $\mathcal{N}=1$ gauge theory, we investigated the semiclassical limit of the conserved quantities and received different types of relations between them. In particular, we reproduced the energy-charge relations $E \sim K^{1 / 2}, E \sim$ $K^{2 / 3}$ and $E-K \sim K^{1 / 3}$, first found for rotating membranes on backgrounds of $G_{2^{-}}$ holonomy in this limit in [5]. Moreover, we found examples of more complicated dependence of the energy on the charges. The most general cases considered, lead to algebraic equations of third or even forth order for the E^{2} as a function of up to five conserved momenta. Presumably, these may correspond to operators of more general type in the dual field theory. Also, they could be connected with the lack of conformal invariance.

As already observed in [5] for rotating membranes on G_{2} manifolds, one may have the same energy-charge relations in the limits of small and large charges. Such are $E \sim K^{1 / 2}$ and $E \sim K^{2 / 3}$. Let us give an example, which confirms this observation. For large charges, according to (4.12), the following equality holds:

$$
E_{l}=2\left(\sqrt{3} \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right|\right)^{1 / 2}\left(P_{\theta}^{l}\right)^{1 / 2}
$$

On the other hand, taking the small charge limit in the expression (4.10) for P_{θ}, which corresponds to $\Delta r_{1} \rightarrow 0$, one obtains the relation

$$
E_{s}=2\left(2 \pi^{2} T_{2} l_{11}^{3}\left|\boldsymbol{\Lambda}_{1}\right|\right)^{1 / 2}\left(P_{\theta}^{s}\right)^{1 / 2}
$$

Hence, in both cases, we have the same $E \sim K^{1 / 2}$ behavior. As a consequence, the ratio of the two energies is given by:

$$
E_{l} / E_{s}=(3 / 4)^{1 / 4}\left(P_{\theta}^{l} / P_{\theta}^{s}\right)^{1 / 2} .
$$

Here, we did not investigate the limit of small conserved charges. However, the exact expressions for all quantities which we are interested in, are written in two forms: one appropriate for considering the large charges limit, and the other - for small ones. That is why, the last limit can be always done.

For comparison, we now give the known results about the different energy-charge relations in the semiclassical limit, for membranes moving on other curved M-theory backgrounds. So far, such relations have been obtained for the following target spaces: $A d S_{p} \times S^{q}, A d S_{4} \times Q^{1,1,1}$, warped $A d S_{5} \times M^{6}$, and 11-dimensional $A d S$-black hole [2], [3], [5], [[8]- [10]. If we denote the conserved angular momentum on the $A d S$-part of the metric with S and on the other part with J, the known expressions for $E(S, J)$ are as follows.

1. On the $A d S_{p} \times S^{q}$ backgrounds [2, 3, 5, 8, 10]

$$
\begin{array}{ll}
E-S \sim S^{1 / 3}, & E-S=c_{1} S^{1 / 3}+c_{2} \frac{J^{2}}{S^{1 / 3}}+\ldots, \\
E=J+\ldots, & E-c_{1} J=\frac{c_{2}}{J^{3}} \sum_{a, b=1}^{d} c_{a b} J_{a} J_{b}+\ldots,
\end{array} \quad E=c_{1} S+c_{2} J^{2} .
$$

2. On the $A d S_{4} \times Q^{1,1,1}$ background

$$
E-S \sim \ln \frac{S}{c}, \quad E=J+\ldots
$$

3. On the warped $A d S_{5} \times M^{6}$ background 5

$$
E-S \sim \ln \frac{S}{c}, \quad E-J=c+\ldots
$$

4. On the 11-dimensional $A d S$-black hole background 5

$$
E-c S \sim S^{3}
$$

It seems to us that an interesting task is to find rotating string configurations in type IIA theory in ten dimensions, which reproduce the energy-charge relations obtained here, for rotating membranes on an eleven dimensional background with G_{2} holonomy. This problem is under investigation [24, and now we give an example of such string solution.

As explained in section 2, the reduction to ten dimensions of the M-theory background (4.1) is given by (2.7), which describes a D6-brane wrapping the \mathbf{S}^{3} in the deformed conifold geometry. Let us consider the following string embedding in (2.7):

$$
X^{0}=\Lambda_{0}^{0} \tau, \quad X^{I}=\Lambda_{0}^{I} \tau, \quad r=r(\sigma), \quad \theta_{1}=\Lambda_{0}^{\theta_{1}} \tau, \quad \theta_{2}=\Lambda_{0}^{\theta_{2}} \tau, \quad \psi_{1}=\phi_{1}=\phi_{2}=0
$$

This ansatz corresponds to string, which is extended along the radial direction r, rotates in the planes defined by the angles θ_{1} and θ_{2} with angular momenta $P_{\theta_{1}}$ and $P_{\theta_{2}}$, and moves along X^{0} and X^{I} with constant energy E and constant momenta P_{I} respectively. It can be shown that for large conserved charges, the dependence of the energy E on $P_{I}, P_{\theta_{1}}$ and $P_{\theta_{2}}$ is

$$
E^{2}=\mathbf{P}^{2}+\operatorname{const}\left(P_{\theta_{1}}^{2}+P_{\theta_{2}}^{2}\right)^{1 / 2}
$$

Thus, this string configuration has the same semiclassical behavior as the membrane in (4.20).

To our knowledge, none of the energy-charge relations obtained here for membranes moving on a G_{2} manifold correspond to usual relations, coming from operators in the dual $\mathcal{N}=1$ gauge theory. The most plausible explanation is that the Kaluza-Klein modes are not fully decoupled from the pure SYM theory excitations. In this respect, a good idea for exploration of the problem is the one proposed in 25. In this article, the $\mathrm{SL}(3, \mathrm{R})$ deformations of a type IIB background based on D5-branes that is conjectured to be dual
to $\mathcal{N}=1$ SYM [26] are studied. It is argued that this deformation only affects the KaluzaKlein sector of the dual field theory and helps decoupling the Kaluza-Klein dynamics from the pure gauge dynamics. Recently, evidences for the above prediction have been given in [27. In this paper, semiclassical strings on the deformed Maldacena-Nunez background (25) are studied and the results are compared with those obtained previously for the undeformed case [28. It was observed there that the string energies increase due to the deformation, which is interpreted as a proof for better decoupling of the Kaluza-Klein modes in the deformed theory. This is in accordance with [25], where it was conjectured that the sectors in which the deformation is decoupled, should correspond to pure gauge theory effects. As an additional evidence for the above idea, the authors of [27] consider a particular string configuration, for which the string energy is independent of the deformation. The articles [25] and [27] give us the line for further investigations in this direction. First, by performing $T s T$ transformation [29], one obtains the deformed eleven dimensional background. Second, find rotating membrane solutions in this new background. Third, compare the energies of the membranes moving on the original and on the deformed backgrounds and so on. The same could be done for strings in type IIA theory in ten dimensions, which reproduce the energy-charge relations obtained for rotating membranes. Then, a natural question is whether the dimensional reduction and the deformation commute? We hope to be able to report our results on these problems soon.

Acknowledgments

The author would like to thank R.C. Rashkov for the valuable discussion.
This work is supported by NSFB grant under contract $\Phi 1412 / 04$.

A. Hypergeometric functions $F_{D}^{(n)}$

Here, we give some properties of the hypergeometric functions of many variables $F_{D}^{(n)}$ used in our calculations. By definition [23], for $\left|z_{j}\right|<1$,

$$
F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{n}\right)=\sum_{k_{1}, \ldots, k_{n}=0}^{\infty} \frac{(a)_{k_{1}+\ldots+k_{n}}\left(b_{1}\right)_{k_{1}} \ldots\left(b_{n}\right)_{k_{n}}}{(c)_{k_{1}+\ldots+k_{n}}} \frac{z_{1}^{k_{1}} \ldots z_{n}^{k_{n}}}{k_{1}!\ldots k_{n}!},
$$

where

$$
(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)}
$$

and $\Gamma(z)$ is the Euler's Γ-function. In particular, $F_{D}^{(1)}(a ; b ; c ; z)={ }_{2} F_{1}(a, b ; c ; z)$ is the Gauss' hypergeometric function, and $F_{D}^{(2)}\left(a ; b_{1}, b_{2} ; c ; z_{1}, z_{2}\right)=F_{1}\left(a, b_{1}, b_{2} ; c ; z_{1}, z_{2}\right)$ is one of the hypergeometric functions of two variables.

1. $F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{i}, \ldots, b_{j}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{i}, \ldots, z_{j}, \ldots, z_{n}\right)=$ $F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{j}, \ldots, b_{i}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{j}, \ldots, z_{i}, \ldots, z_{n}\right)$.
2. $F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{n}\right)=$

$$
\prod_{i=1}^{n}\left(1-z_{i}\right)^{-b_{i}} F_{D}^{(n)}\left(c-a ; b_{1}, \ldots, b_{n} ; c ; \frac{z_{1}}{z_{1}-1}, \ldots, \frac{z_{n}}{z_{n}-1}\right) .
$$

3. $F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{i-1}, b_{i}, b_{i+1}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{i-1}, 1, z_{i+1}, \ldots, z_{n}\right)=$ $\frac{\Gamma(c) \Gamma\left(c-a-b_{i}\right)}{\Gamma(c-a) \Gamma\left(c-b_{i}\right)} F_{D}^{(n-1)}\left(a ; b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n} ; c-b_{i} ; z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right)$.
4. $\quad F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{i-1}, b_{i}, b_{i+1}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{i-1}, 0, z_{i+1}, \ldots, z_{n}\right)=$
$F_{D}^{(n-1)}\left(a ; b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right)$.
5. $F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{i-1}, 0, b_{i+1}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{i-1}, z_{i}, z_{i+1}, \ldots, z_{n}\right)=$ $F_{D}^{(n-1)}\left(a ; b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right)$.
6. $F_{D}^{(n)}\left(a ; b_{1}, \ldots, b_{i}, \ldots, b_{j}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{i}, \ldots, z_{i}, \ldots, z_{n}\right)=$ $F_{D}^{(n-1)}\left(a ; b_{1}, \ldots, b_{i}+b_{j}, \ldots, b_{n} ; c ; z_{1}, \ldots, z_{i}, \ldots, z_{n}\right)$.
7. $F_{D}^{(2 n+1)}\left(a ; a-c+1, b_{2}, b_{2}, \ldots, b_{2 n}, b_{2 n} ; c ;-1, z_{2},-z_{2} \ldots, z_{2 n},-z_{2 n}\right)=$ $\frac{\Gamma(a / 2) \Gamma(c)}{2 \Gamma(a) \Gamma(c-a / 2)} F_{D}^{(n)}\left(a / 2 ; b_{2}, \ldots, b_{2 n} ; c-a / 2 ; z_{2}^{2}, \ldots, z_{2 n}^{2}\right)$.
8. $F_{D}^{(2 n+1)}\left(c-a ; a-c+1, b_{2}, b_{2}, \ldots, b_{2 n}, b_{2 n} ; c\right.$;

$$
\begin{aligned}
& \left.1 / 2,-\frac{z_{2}}{1-z_{2}}, \frac{z_{2}}{1+z_{2}}, \ldots,-\frac{z_{2 n}}{1-z_{2 n}}, \frac{z_{2 n}}{1+z_{2 n}}\right)= \\
& \frac{\Gamma(a / 2) \Gamma(c)}{2^{c-a} \Gamma(a) \Gamma(c-a / 2)} F_{D}^{(n)}\left(c-a ; b_{2}, \ldots, b_{2 n} ; c-a / 2 ;-\frac{z_{2}^{2}}{1-z_{2}^{2}}, \ldots,-\frac{z_{2 n}^{2}}{1-z_{2 n}^{2}}\right) .
\end{aligned}
$$

9. $F_{D}^{(2)}(a ; b, b ; c ; z,-z)={ }_{3} F_{2}\binom{a / 2,(a+1) / 2, b}{c / 2,(c+1) / 2 ; z^{2}}$.

B. More solutions

Here, we give other exact rotating membrane solutions and explicit expressions for the corresponding conserved quantities, which lead to the same dependence of the energy on the charges in the semiclassical limit, as part of those described in section 0 .

B. 1 Fifth type of membrane embedding

Now, consider membrane, which moves with constant energy E and momenta P_{I} and is extended along the radial direction r. Also, it rotates in the plane defined by the angle $\phi_{+}=\phi+\tilde{\phi}$. In addition, the membrane is wrapped along the angular coordinates $\psi=\tilde{\psi}$ and $\phi_{-}=\phi-\tilde{\phi}$. This configuration corresponds to the following ansatz, for which the constraints (3.11), (3.12) are identically satisfied, and $\mathcal{P}_{\mu}^{2} \equiv 0^{4}$:

$$
\begin{aligned}
& X^{0} \equiv t=\Lambda_{0}^{0} \tau, \quad X^{I}=\Lambda_{0}^{I} \tau, \quad X^{4} \equiv r(\sigma), \\
& \psi=\tilde{\psi}=\Lambda_{1}^{\psi}\left(\delta+\frac{\Lambda_{2}^{-}}{\Lambda_{1}^{-}} \sigma\right), \quad \phi_{-}=\Lambda_{1}^{-} \delta+\Lambda_{2}^{-} \sigma, \quad \phi_{+}=\Lambda_{0}^{+} \tau ; \quad \phi_{ \pm}=\phi \pm \tilde{\phi} .
\end{aligned}
$$

[^3]The background felt by the membrane in this case, as well as in all other cases considered below, is

$$
\begin{aligned}
& g_{00} \equiv g_{t t}=-l_{11}^{2}, \quad g_{I J}=l_{11}^{2} \delta_{I J}, \quad g_{44} \equiv g_{r r}=\frac{l_{11}^{2}}{C^{2}(r)}, \\
& g_{\psi \psi}=l_{11}^{2}\left(\frac{4 l}{3}\right)^{2} C^{2}(r), \quad g_{--}=l_{11}^{2} A^{2}(r), \quad g_{++}=l_{11}^{2} B^{2}(r) .
\end{aligned}
$$

Therefore, in the notations introduced in (3.8), we have $\mu=(0, I, \psi,-,+), a=4 \equiv r$. The Lagrangian (3.9) takes the form

$$
\begin{aligned}
& \mathcal{L}^{A}(\sigma)=\frac{1}{4 \lambda^{0}}\left(K_{r r} r^{\prime 2}-V\right), \quad K_{r r}=-\left(2 \lambda^{0} T_{2} l_{11}^{2}\right)^{2}\left[\left(\Lambda_{1}^{-}\right)^{2} \frac{A^{2}}{C^{2}}+\left(\frac{4 l}{3}\right)^{2}\left(\Lambda_{1}^{\psi}\right)^{2}\right] \\
& V=U=l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{+}\right)^{2} B^{2}\right]
\end{aligned}
$$

The turning points defined by $r^{\prime}=0$ coincide with those given in 4.23). The solution (3.17) now reads

$$
\begin{aligned}
& \sigma(r)=\int_{3 l}^{r}\left[-\frac{K_{r r}(t)}{U(t)}\right]^{1 / 2} d t=4 \lambda^{0} T_{2} l_{11} \frac{\Lambda_{1}^{-}}{\Lambda_{0}^{+}}\left[\frac{\prod_{\alpha=1}^{3}\left(3 l-w_{\alpha}\right)}{\left(r_{1}-3 l\right)\left(3 l-r_{2}\right)}\right]^{1 / 2} \Delta r^{1 / 2} \times \\
& F_{D}^{(5)}(1 / 2 ; 1 / 2,1 / 2,-1 / 2,-1 / 2,-1 / 2 ; 3 / 2 ; \\
& \left.-\frac{\Delta r}{3 l-r_{2}}, \frac{\Delta r}{r_{1}-3 l},-\frac{\Delta r}{3 l-w_{1}},-\frac{\Delta r}{3 l-w_{2}},-\frac{\Delta r}{3 l-w_{3}}\right),
\end{aligned}
$$

where $w_{\alpha}\left(\Lambda_{1}^{\psi}\right)(\alpha=1,2,3)$ are the zeros of the polynomial

$$
t^{3}-l t^{2}-l^{2}\left[1-\left(\frac{8 \Lambda_{1}^{\psi}}{\sqrt{3}}\right)^{2}\right] t+l^{3}\left[1-3\left(\frac{8 \Lambda_{1}^{\psi}}{\sqrt{3}}\right)^{2}\right]=\left(t-w_{1}\right)\left(t-w_{2}\right)\left(t-w_{3}\right) .
$$

The normalization condition (3.18) leads to

$$
\begin{aligned}
& 2 \lambda^{0} T_{2} l_{11} \frac{\Lambda_{1}^{-}}{\Lambda_{0}^{+}}\left[\frac{\prod_{\alpha=1}^{3}\left(3 l-w_{\alpha}\right)}{3 l-r_{2}}\right]^{1 / 2} \times \\
& F_{D}^{(4)}\left(1 / 2 ; 1 / 2,-1 / 2,-1 / 2,-1 / 2 ; 1 ;-\frac{\Delta r_{1}}{3 l-r_{2}},-\frac{\Delta r_{1}}{3 l-w_{1}},-\frac{\Delta r_{1}}{3 l-w_{2}},-\frac{\Delta r_{1}}{3 l-w_{3}}\right)= \\
& 2 \lambda^{0} T_{2} l_{11} \frac{\Lambda_{1}^{-}}{\Lambda_{0}^{+}}\left[\frac{\prod_{\alpha=1}^{3}\left(3 l-w_{\alpha}\right)}{3 l-r_{2}}\right]^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \prod_{\alpha=1}^{3}\left(1+\frac{\Delta r_{1}}{3 l-w_{\alpha}}\right)^{1 / 2} \times \\
& F_{D}^{(4)}\left(1 / 2 ; 1 / 2,-1 / 2,-1 / 2,-1 / 2 ; 1 ; \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}, \frac{1}{\left.1+\frac{3 l-w_{1}}{\Delta r_{1}}, \frac{1}{1+\frac{3 l-w_{2}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-w_{3}}{\Delta r_{1}}}\right)=1 .} .\right.
\end{aligned}
$$

In accordance with (3.14), we derive the following expression for the conserved momentum $P_{+} \equiv P_{\phi_{+}}$:

$$
P_{+}=\frac{l}{3} \pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{-}\left[\frac{\prod_{\alpha=1}^{3}\left(3 l-w_{\alpha}\right)}{3 l-r_{2}}\right]^{1 / 2} \Delta r_{1} \times
$$

$$
\begin{aligned}
& F_{D}^{(5)}\left(3 / 2 ;-1,1 / 2,-1 / 2,-1 / 2,-1 / 2 ; 2 ;-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{3 l-r_{2}},-\frac{\Delta r_{1}}{3 l-w_{1}},-\frac{\Delta r_{1}}{3 l-w_{2}},-\frac{\Delta r_{1}}{3 l-w_{3}}\right) \\
& =\frac{l}{3} \pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{-}\left[\frac{\prod_{\alpha=1}^{3}\left(3 l-w_{\alpha}\right)}{3 l-r_{2}}\right]^{1 / 2} \\
& \times \Delta r_{1}\left(1+\frac{\Delta r_{1}}{4 l}\right)\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \prod_{\alpha=1}^{3}\left(1+\frac{\Delta r_{1}}{3 l-w_{\alpha}}\right)^{1 / 2} \\
& \times F_{D}^{(5)}(1 / 2 ;-1,1 / 2,-1 / 2,-1 / 2,-1 / 2 ; 2 ; \\
& \left.\frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-w_{1}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-w_{2}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-w_{3}}{\Delta r_{1}}}\right) .
\end{aligned}
$$

Taking the semiclassical limit ${ }^{5}$, we obtain the following dependence of the energy on \mathbf{P} and P_{+}:

$$
E^{2}=\mathbf{P}^{2}+3^{5 / 3}\left(\pi T_{2} l_{11}^{3} \Lambda_{1}^{-}\right)^{2 / 3} P_{+}^{4 / 3}
$$

which is of the same type as (4.27). The semiclassical limit of the solution $\sigma(r)$ is given by:

$$
\begin{aligned}
& \sigma_{s c l}(r)=2 \pi^{1 / 3}\left(\frac{\pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{-}}{9 P_{+}}\right)^{2 / 3}\left[\prod_{\alpha=1}^{3}\left(3 l-w_{\alpha}\right)\right]^{1 / 2} \Delta r^{1 / 2} \times \\
& F_{D}^{(3)}\left(1 / 2 ;-1 / 2,-1 / 2,-1 / 2 ; 3 / 2 ;-\frac{\Delta r}{3 l-w_{1}},-\frac{\Delta r}{3 l-w_{2}},-\frac{\Delta r}{3 l-w_{3}}\right) \\
& =2 \pi^{1 / 3}\left(\frac{\pi^{2} T_{2} l_{11}^{3} \Lambda_{1}^{-}}{9 P_{+}}\right)^{2 / 3}\left[\prod_{\alpha=1}^{3}\left(3 l-w_{\alpha}\right)\right]^{1 / 2} \Delta r^{1 / 2} \prod_{\alpha=1}^{3}\left(1+\frac{\Delta r}{3 l-w_{\alpha}}\right)^{1 / 2} \\
& \times F_{D}^{(3)}\left(1 ;-1 / 2,-1 / 2,-1 / 2 ; 3 / 2 ; \frac{1}{1+\frac{3 l-w_{1}}{\Delta r}}, \frac{1}{1+\frac{3 l-w_{2}}{\Delta r}}, \frac{1}{1+\frac{3 l-w_{3}}{\Delta r}}\right)
\end{aligned}
$$

B. 2 Sixth type of membrane embedding

Let us take the following membrane configuration:

$$
\begin{aligned}
& X^{0} \equiv t=\Lambda_{0}^{0} \tau, \quad X^{I}=\Lambda_{0}^{I} \tau, \quad X^{4} \equiv r(\sigma), \\
& \psi=\tilde{\psi}=\Lambda_{1}^{\psi}\left(\delta+\frac{\Lambda_{2}^{+}}{\Lambda_{1}^{+}} \sigma\right), \quad \phi_{+}=\Lambda_{1}^{+} \delta+\Lambda_{2}^{+} \sigma, \quad \phi_{-}=\Lambda_{0}^{-} \tau .
\end{aligned}
$$

It is similar to the case just considered, but the roles of the angles ϕ_{+}and ϕ_{-}are interchanged. Although the exact classical expressions for the quantities we are interested in are different from those obtained for the previously considered embedding, one arrives at the same semiclassical behavior:

$$
E^{2}=\mathbf{P}^{2}+3^{5 / 3}\left(\pi T_{2} l_{11}^{3} \Lambda_{1}^{+}\right)^{2 / 3} P_{-}^{4 / 3}
$$

${ }^{5}$ In this limit w_{α} remain finite.

B. 3 Seventh type of membrane embedding

Now, we consider membrane embedding, which corresponds to rotation in the plane given by the angle $\psi=\tilde{\psi}$, and wrapping along ϕ_{+}and ϕ_{-}:

$$
\begin{aligned}
& X^{0} \equiv t=\Lambda_{0}^{0} \tau, \quad X^{I}=\Lambda_{0}^{I} \tau, \quad X^{4} \equiv r(\sigma), \\
& \psi=\tilde{\psi}=\Lambda_{0}^{\psi} \tau, \quad \phi_{-}=\Lambda_{1}^{-} \delta+\Lambda_{2}^{-} \sigma, \quad \phi_{+}=\Lambda_{1}^{+}\left(\delta+\frac{\Lambda_{2}^{-}}{\Lambda_{1}^{-}} \sigma\right) .
\end{aligned}
$$

The effective Lagrangian (3.9) now reads

$$
\begin{aligned}
& \mathcal{L}^{A}(\sigma)=\frac{1}{4 \lambda^{0}}\left(K_{r r} r^{\prime 2}-V\right), \quad K_{r r}=-\left(2 \lambda^{0} T_{2} l_{11}^{2}\right)^{2} \frac{1}{C^{2}}\left[\left(\Lambda_{1}^{-}\right)^{2} A^{2}+\left(\Lambda_{1}^{+}\right)^{2} B^{2}\right] \\
& V=U=l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\frac{4 l}{3}\right)^{2}\left(\Lambda_{0}^{\psi}\right)^{2} C^{2}\right]
\end{aligned}
$$

For the solutions of the equation $r^{\prime}=0$ one obtains

$$
\begin{aligned}
& r_{\min }=3 l, \quad r_{\max }=r_{1}=l \sqrt{1+\frac{8}{1-\frac{9 v_{0}^{2}}{16 l^{2}\left(\Lambda_{0}^{\psi}\right)^{2}}}}>3 l \\
& r_{2}=-l \sqrt{1+\frac{8}{1-\frac{9 v_{0}^{2}}{16 l^{2}\left(\Lambda_{0}^{\psi}\right)^{2}}}}<0, \quad v_{0}^{2}=\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2} .
\end{aligned}
$$

For the membrane solution (3.17), we find the following explicit expression

$$
\begin{aligned}
& \sigma(r)=\int_{3 l}^{r}\left[-\frac{K_{r r}(t)}{U(t)}\right]^{1 / 2} d t=2 \lambda^{0} T_{2} l_{11} \frac{\left[\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}\right]^{1 / 2}}{\Lambda_{0}^{\psi}\left[1-\frac{9 v_{0}^{2}}{16 l^{2}\left(\Lambda_{0}^{\psi}\right)^{2}}\right]^{1 / 2}}\left[\frac{2 l\left(3 l-w_{+}\right)\left(3 l-w_{-}\right)}{\left(r_{1}-3 l\right)\left(3 l-r_{2}\right)}\right]^{1 / 2} \\
& \times \Delta r^{1 / 2} F_{D}^{(7)}(1 / 2 ;-1,-1,1 / 2,1 / 2,1 / 2,-1 / 2,-1 / 2 ; 3 / 2 \\
& \left.-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l},-\frac{\Delta r}{3 l-r_{2}}, \frac{\Delta r}{r_{1}-3 l},-\frac{\Delta r}{3 l-w_{+}},-\frac{\Delta r}{3 l-w_{-}}\right)
\end{aligned}
$$

where $w_{ \pm}$are given by

$$
w_{ \pm}=l\left[\frac{\left(\Lambda_{1}^{+}\right)^{2}-\left(\Lambda_{1}^{-}\right)^{2}}{\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}} \pm \sqrt{3+\left(\frac{\left(\Lambda_{1}^{+}\right)^{2}-\left(\Lambda_{1}^{-}\right)^{2}}{\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}}\right)^{2}}\right]
$$

The normalization condition (3.18) gives:

$$
\begin{aligned}
& \lambda^{0} T_{2} l_{11} \frac{\left[\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}\right]^{1 / 2}}{\Lambda_{0}^{\psi}\left[1-\frac{9 v_{0}^{2}}{16 l^{2}\left(\Lambda_{0}^{\psi}\right)^{2}}\right]^{1 / 2}}\left[\frac{2 l\left(3 l-w_{+}\right)\left(3 l-w_{-}\right)}{3 l-r_{2}}\right]^{1 / 2} \\
& \times F_{D}^{(6)}(1 / 2 ;-1,-1,1 / 2,1 / 2,-1 / 2,-1 / 2 ; 1 ; \\
& \left.-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}},-\frac{\Delta r_{1}}{3 l-w_{+}},-\frac{\Delta r_{1}}{3 l-w_{-}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda^{0} T_{2} l_{11} \frac{\left[\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}\right]^{1 / 2}}{\Lambda_{0}^{\psi}\left[1-\frac{9 v_{0}^{2}}{16 l^{2}\left(\Lambda_{0}^{\psi}\right)^{2}}\right]^{1 / 2}}\left[\frac{2 l\left(3 l-w_{+}\right)\left(3 l-w_{-}\right)}{3 l-r_{2}}\right]^{1 / 2} \\
& \times\left(1+\frac{\Delta r_{1}}{2 l}\right)\left(1+\frac{\Delta r_{1}}{4 l}\right)\left(1+\frac{\Delta r_{1}}{6 l}\right)^{-1 / 2} \\
& \times\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-w_{+}}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-w_{-}}\right)^{1 / 2} \\
& \times F_{D}^{(6)}(1 / 2 ;-1,-1,1 / 2,1 / 2,-1 / 2,-1 / 2 ; 1 ; \\
& \frac{1}{1+\frac{2 l}{\Delta r_{1}}}, \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{\left.1+\frac{6 l}{\Delta r_{1}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-w_{+}}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-w_{-}}{\Delta r_{1}}}\right)=1}
\end{aligned}
$$

In the case under consideration, the nontrivial conserved quantities are E, \mathbf{P} and $P_{\psi}=P_{\tilde{\psi}}$. By using (3.14), we derive the following result for P_{ψ}

$$
\begin{aligned}
& P_{\psi}=\pi^{2} T_{2} l_{11}^{3} \frac{\left[\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}\right]^{1 / 2}}{3\left[1-\frac{9 v_{0}^{2}}{16 l^{2}\left(\Lambda_{0}^{\psi}\right)^{2}}\right]^{1 / 2}}\left[\frac{(2 l)^{3}\left(3 l-w_{+}\right)\left(3 l-w_{-}\right)}{3 l-r_{2}}\right]^{1 / 2} \times \\
& \Delta r_{1} F_{D}^{(4)}\left(3 / 2 ;-1 / 2,1 / 2,-1 / 2,-1 / 2 ; 2 ;-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}},-\frac{\Delta r_{1}}{3 l-w_{+}},-\frac{\Delta r_{1}}{3 l-w_{-}}\right) \\
& =\pi^{2} T_{2} l_{11}^{3} \frac{\left[\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}\right]^{1 / 2}}{3\left[1-\frac{9 v_{0}^{2}}{16 l^{2}\left(\Lambda_{0}^{\psi}\right)^{2}}\right]^{1 / 2}}\left[\frac{(2 l)^{3}\left(3 l-w_{+}\right)\left(3 l-w_{-}\right)}{3 l-r_{2}}\right]^{1 / 2} \\
& \times \Delta r_{1}\left(1+\frac{\Delta r_{1}}{6 l}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-w_{+}}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-w_{-}}\right)^{1 / 2} \\
& \times F_{D}^{(4)}\left(1 / 2 ;-1 / 2,1 / 2,-1 / 2,-1 / 2 ; 2 ; \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}},} \frac{1}{\left.1+\frac{3 l-w_{+}}{\Delta r_{1}}, \frac{1}{1+\frac{3 l-w_{-}}{\Delta r_{1}}}\right) .}\right.
\end{aligned}
$$

Based on the above expressions, in the semiclassical limit, we obtain:

$$
E^{2}=\mathbf{P}^{2}+\left(\frac{3}{4 l}\right)^{2} P_{\psi}^{2}-\frac{3}{4}\left(\pi^{2} T_{2} l_{11}^{3}\right)^{2 / 3}\left[\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}\right]^{1 / 3} P_{\psi}^{4 / 3}
$$

This is the same type of semiclassical behavior as the one in (4.34). For large conserved charges, the solution $\sigma(r)$ simplifies to

$$
\begin{aligned}
& \sigma_{s c l}(r)=\frac{16 \pi^{2} T_{2} l_{11}^{3}}{9 P_{\psi}}\left[\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}\right]^{1 / 2}\left[l^{3}\left(3 l-w_{+}\right)\left(3 l-w_{-}\right)\right]^{1 / 2} \times \\
& \Delta r^{1 / 2} F_{D}^{(5)}\left(1 / 2 ;-1,-1,1 / 2,-1 / 2,-1 / 2 ; 3 / 2 ;-\frac{\Delta r}{2 l},-\frac{\Delta r}{4 l},-\frac{\Delta r}{6 l},-\frac{\Delta r}{3 l-w_{+}},-\frac{\Delta r}{3 l-w_{-}}\right) \\
& =\frac{16 \pi^{2} T_{2} l_{11}^{3}}{9 P_{\psi}}\left[\left(\Lambda_{1}^{+}\right)^{2}+\left(\Lambda_{1}^{-}\right)^{2}\right]^{1 / 2}\left[l^{3}\left(3 l-w_{+}\right)\left(3 l-w_{-}\right)\right]^{1 / 2} \times \\
& \Delta r^{1 / 2}\left(1+\frac{\Delta r}{2 l}\right)\left(1+\frac{\Delta r}{4 l}\right)\left(1+\frac{\Delta r}{6 l}\right)^{-1 / 2}\left(1+\frac{\Delta r}{3 l-w_{+}}\right)^{1 / 2}\left(1+\frac{\Delta r}{3 l-w_{-}}\right)^{1 / 2} \times
\end{aligned}
$$

$$
F_{D}^{(5)}\left(1 ;-1,-1,1 / 2,-1 / 2,-1 / 2 ; 3 / 2 ; \frac{1}{1+\frac{2 l}{\Delta r}}, \frac{1}{1+\frac{4 l}{\Delta r}}, \frac{1}{1+\frac{6 l}{\Delta r}}, \frac{1}{1+\frac{3 l-w_{+}}{\Delta r}}, \frac{1}{1+\frac{3 l-w_{-}}{\Delta r}}\right) .
$$

B. 4 Eighth type of membrane embedding

Here, we investigate the following membrane configuration:

$$
\begin{aligned}
& X^{0} \equiv t=\Lambda_{0}^{0} \tau, \quad X^{I}=\Lambda_{0}^{I} \tau, \quad X^{4} \equiv r(\sigma) \\
& \psi=\tilde{\psi}=\Lambda_{1}^{\psi} \delta+\Lambda_{2}^{\psi} \sigma, \quad \phi_{-}=\Lambda_{0}^{-} \tau, \quad \phi_{+}=\Lambda_{0}^{+} \tau
\end{aligned}
$$

It describes membrane, rotating in the planes given by the angles $\phi_{ \pm}$, and wrapped along the coordinate $\psi=\tilde{\psi}$. In this case, the reduced Lagrangian (3.9) have the form:

$$
\begin{aligned}
& \mathcal{L}^{A}(\sigma)=\frac{1}{4 \lambda^{0}}\left(K_{r r} r^{2}-V\right), \quad K_{r r}=-\left(2 \lambda^{0} T_{2} l_{11}^{2}\right)^{2}\left(\frac{4 l}{3}\right)^{2}\left(\Lambda_{1}^{\psi}\right)^{2} \\
& V=U=l_{11}^{2}\left[\left(\Lambda_{0}^{0}\right)^{2}-\Lambda_{0}^{2}-\left(\Lambda_{0}^{-}\right)^{2} A^{2}-\left(\Lambda_{0}^{+}\right)^{2} B^{2}\right]=l_{11}^{2}\left[v_{0}^{2}-\left(\Lambda_{0}^{-}\right)^{2} A^{2}-\left(\Lambda_{0}^{+}\right)^{2} B^{2}\right]
\end{aligned}
$$

By solving the equation $r^{\prime}=0($ see $(3.10))$, one obtains

$$
r_{ \pm}=l\left\{\frac{\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}} \pm \sqrt{3+\left[\frac{\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}}\right]^{2}+\frac{12 v_{0}^{2}}{l^{2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]}}\right\}
$$

Depending on the sign of $\left[\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}\right]$, we have the following three cases.

1. $\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}=0$

$$
r_{\max }=r_{1}=l \sqrt{3+\frac{6 v_{0}^{2}}{l^{2}\left(\Lambda_{0}^{-}\right)^{2}}}, \quad r_{2}=-r_{1}
$$

2. $\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}>0$

$$
\begin{aligned}
& r_{1}=l \frac{\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}}\left\{\sqrt{1+3\left[\frac{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}}\right]^{2}\left(1+\frac{4 v_{0}^{2}}{l^{2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]}\right)}+1\right\} \\
& r_{2}=-l \frac{\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}}\left\{\sqrt{1+3\left[\frac{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}}\right]^{2}\left(1+\frac{4 v_{0}^{2}}{l^{2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]}\right)}-1\right\} .
\end{aligned}
$$

3. $\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}<0$

$$
\begin{aligned}
& r_{1}=l \frac{\left(\Lambda_{0}^{-}\right)^{2}-\left(\Lambda_{0}^{+}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}}\left\{\sqrt{1+3\left[\frac{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}}\right]^{2}\left(1+\frac{4 v_{0}^{2}}{l^{2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]}\right)}-1\right\} \\
& r_{2}=-l \frac{\left(\Lambda_{0}^{-}\right)^{2}-\left(\Lambda_{0}^{+}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}}\left\{\sqrt{1+3\left[\frac{\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}}{\left(\Lambda_{0}^{+}\right)^{2}-\left(\Lambda_{0}^{-}\right)^{2}}\right]^{2}\left(1+\frac{4 v_{0}^{2}}{l^{2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]}\right)}+1\right\} .
\end{aligned}
$$

In all these cases, the condition $r_{\max }=r_{1}>3 l=r_{\min }$ leads to $v_{0}^{2}>l^{2}\left(\Lambda_{0}^{-}\right)^{2}$, so we can consider them simultaneously.

For the present embedding, the membrane solution (3.17) has the form

$$
\begin{aligned}
& \sigma(r)=\int_{3 l}^{r}\left[-\frac{K_{r r}(t)}{U(t)}\right]^{1 / 2} d t \\
& =\frac{16 \lambda^{0} T_{2} l_{11} l \Lambda_{1}^{\psi}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}\left[3\left(r_{1}-3 l\right)\left(3 l-r_{2}\right)\right]^{1 / 2}} \Delta r F_{D}^{(2)}\left(1 ; 1 / 2,1 / 2 ; 2 ;-\frac{\Delta r}{3 l-r_{2}}, \frac{\Delta r}{r_{1}-3 l}\right),
\end{aligned}
$$

and the normalization condition (3.18) reads

$$
\begin{aligned}
& \frac{32 \lambda^{0} T_{2} l_{11} l \Lambda_{1}^{\psi}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}}\left[\frac{\Delta r_{1}}{3\left(3 l-r_{2}\right)}\right]^{1 / 2} F_{D}^{(1)}\left(1 ; 1 / 2 ; 3 / 2 ;-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{32 \lambda^{0} T_{2} l_{11} l \Lambda_{1}^{\psi}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}}\left[\frac{\Delta r_{1}}{3\left(3 l-r_{2}\right)}\right]^{1 / 2}{ }_{2} F_{1}\left(1,1 / 2 ; 3 / 2 ;-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{32 \lambda^{0} T_{2} l_{11} l \Lambda_{1}^{\psi}}{\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}}\left[\frac{\Delta r_{1}}{3\left(3 l-r_{2}\right)}\right]^{1 / 2}\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2}{ }_{2} F_{1}\left(1 / 2,1 / 2 ; 3 / 2 ; \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right) \\
& =\frac{32 \lambda^{0} T_{2} l_{11} l \Lambda_{1}^{\psi}}{3^{1 / 2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}} \arcsin \left(1+\frac{3 l-r_{2}}{\Delta r_{1}}\right)^{-1 / 2}=\pi .
\end{aligned}
$$

According to (3.14), the computation of the conserved momenta $P_{ \pm}=P_{\phi_{ \pm}}$gives

$$
\begin{aligned}
& P_{+}=\frac{64 \pi T_{2} l_{11}^{3} l^{2} \Lambda_{1}^{\psi} \Lambda_{0}^{+}}{3^{5 / 2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}}\left(\frac{\Delta r_{1}^{3}}{3 l-r_{2}}\right)^{1 / 2} F_{D}^{(2)}\left(2 ;-1,1 / 2 ; 5 / 2 ;-\frac{\Delta r_{1}}{4 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{64 \pi T_{2} l_{11}^{3} l^{2} \Lambda_{1}^{\psi} \Lambda_{0}^{+}}{3^{5 / 2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}}\left(\frac{\Delta r_{1}^{3}}{3 l-r_{2}}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{4 l}\right)\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \\
& \times F_{D}^{(2)}\left(1 / 2 ;-1,1 / 2 ; 5 / 2 ; \frac{1}{1+\frac{4 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right) \\
& P_{-}=\frac{32 \pi T_{2} l_{11}^{3} l^{3} \Lambda_{1}^{\psi} \Lambda_{0}^{-}}{3^{1 / 2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}}\left(\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{1 / 2} \\
& \times F_{D}^{(3)}\left(1 ;-1,-1,1 / 2 ; 3 / 2 ;-\frac{\Delta r_{1}}{2 l},-\frac{\Delta r_{1}}{6 l},-\frac{\Delta r_{1}}{3 l-r_{2}}\right) \\
& =\frac{32 \pi T_{2} l_{11}^{3} l^{3} \Lambda_{1}^{\psi} \Lambda_{0}^{-}}{3^{1 / 2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}}\left(\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{1 / 2}\left(1+\frac{\Delta r_{1}}{2 l}\right)\left(1+\frac{\Delta r_{1}}{6 l}\right)\left(1+\frac{\Delta r_{1}}{3 l-r_{2}}\right)^{-1 / 2} \\
& \times F_{D}^{(3)}\left(1 / 2 ;-1,-1,1 / 2 ; 3 / 2 ; \frac{1}{\left.1+\frac{2 l}{\Delta r_{1}}, \frac{1}{1+\frac{6 l}{\Delta r_{1}}}, \frac{1}{1+\frac{3 l-r_{2}}{\Delta r_{1}}}\right)}\right.
\end{aligned}
$$

In the semiclassical limit $r_{1} \rightarrow \infty$, the above expressions for the normalization condition and $P_{ \pm}$reduce to:

$$
\frac{8 \lambda^{0} T_{2} l_{11} l \Lambda_{1}^{\psi}}{3^{1 / 2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{1 / 2}}=1, \quad P_{ \pm}=\frac{2^{5 / 2} \pi^{2} T_{2} l_{11}^{3} l \Lambda_{1}^{\psi} \Lambda_{0}^{ \pm}}{3^{1 / 2}\left[\left(\Lambda_{0}^{+}\right)^{2}+\left(\Lambda_{0}^{-}\right)^{2}\right]^{3 / 2}} v_{0}^{2}
$$

Combining these equalities with (4.9), one obtains the following relation between E, \mathbf{P} and $P_{ \pm}$:

$$
E^{2}=\mathbf{P}^{2}+(128 / 3)^{1 / 2} \pi^{2} T_{2} l_{11}^{3} l \Lambda_{1}^{\psi}\left(P_{+}^{2}+P_{-}^{2}\right)^{1 / 2}
$$

This is the same semiclassical behavior as in 4.20).
Finally, let us write down the semiclassical limit of the solution $\sigma(r)$ for the present embedding. It is the simplest one, we have been able to obtain in this paper, and is given by:

$$
\begin{aligned}
& \sigma_{s c l}(r)=\frac{\left(P_{+}^{2}+P_{-}^{2}\right)^{1 / 4}}{\left(2^{5} 3\right)^{1 / 4}\left(\pi^{2} T_{2} l_{11}^{3} l \Lambda_{1}^{\psi}\right)^{1 / 2}} \Delta r F_{D}^{(2)}\left(1 ; 1 / 2,1 / 2 ; 2 ;-\frac{\Delta r}{\Delta r_{1}}, \frac{\Delta r}{\Delta r_{1}}\right) \\
& =\frac{\left(P_{+}^{2}+P_{-}^{2}\right)^{1 / 4}}{\left(2^{5} 3\right)^{1 / 4}\left(\pi^{2} T_{2} l_{11}^{3} l \Lambda_{1}^{\psi}\right)^{1 / 2}} \Delta r_{3} F_{2}\binom{1 / 2,1,1 / 2}{1,3 / 2 ; \frac{\Delta r^{2}}{\Delta r_{1}^{2}}} \\
& =\frac{\left(P_{+}^{2}+P_{-}^{2}\right)^{1 / 4}}{\left(2^{5} 3\right)^{1 / 4}\left(\pi^{2} T_{2} l_{11}^{3} l \Lambda_{1}^{\psi}\right)^{1 / 2}} \Delta r_{2} F_{1}\left(1 / 2,1 / 2 ; 3 / 2 ; \frac{\Delta r^{2}}{\Delta r_{1}^{2}}\right) \\
& =\frac{\left(P_{+}^{2}+P_{-}^{2}\right)^{1 / 4}}{\left(2^{5} 3\right)^{1 / 4}\left(\pi^{2} T_{2} l_{11}^{3} l \Lambda_{1}^{\psi}\right)^{1 / 2}} \Delta r_{1} \arcsin \left(\frac{\Delta r}{\Delta r_{1}}\right) .
\end{aligned}
$$

Obviously, it can be inverted to give

$$
r_{s c l}(\sigma)=3 l+(27 / 2)^{1 / 4} \frac{\left(P_{+}^{2}+P_{-}^{2}\right)^{1 / 4}}{\left(\pi^{2} T_{2} l_{11}^{3} l \Lambda_{1}^{\psi}\right)^{1 / 2}} \sin \left[(8 / 3)^{1 / 2} \frac{\pi^{2} T_{2} l_{11}^{3} l \Lambda_{1}^{\psi}}{\left(P_{+}^{2}+P_{-}^{2}\right)^{1 / 2}} \sigma\right]
$$

References

[1] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 hep-th/0204051.
[2] E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 hep-th/0205131.
[3] M. Alishahiha and M. Ghasemkhani, Orbiting membranes in M-theory on $\operatorname{AdS} S_{7} \times S^{4}$ background, JHEP 08 (2002) 046 hep-th/0206237.
[4] M. Alishahiha and A.E. Mosaffa, Circular semiclassical string solutions on confining $A d S / C F T$ backgrounds, JHEP 10 (2002) 060 hep-th/0210122.
[5] S.A. Hartnoll and C. Núñez, Rotating membranes on G_{2} manifolds, logarithmic anomalous dimensions and $N=1$ duality, JHEP 02 (2003) 049 hep-th/0210218.
[6] P. Bozhilov, M2-brane solutions in $A d S_{7} \times S^{4}$, JHEP 10 (2003) 032 hep-th/0309215.
[7] J. Hoppe and S. Theisen, Spinning membranes on $A d S_{p} \times S^{q}$, hep-th/0405170.
[8] J. Brugues, J. Rojo and J.G. Russo, Non-perturbative states in type-II superstring theory from classical spinning membranes, Nucl. Phys. B 710 (2005) 117 hep-th/0408174.
[9] P. Bozhilov, Membrane solutions in M-theory, JHEP 08 (2005) 087 hep-th/0507149.
[10] J. Engquist and P. Sundell, Brane partons and singleton strings, hep-th/0508124.
[11] U. Gursoy, C. Núñez and M. Schvellinger, RG flows from Spin(7), CY 4-fold and HK manifolds to AdS, Penrose limits and pp waves, JHEP 06 (2002) 015 hep-th/0203124.
[12] M. Schvellinger, Spinning and rotating strings for $N=1 S Y M$ theory and brane constructions, JHEP 02 (2004) 066 hep-th/0309161.
[13] M. Axenides, E.G. Floratos and L. Perivolaropoulos, Rotating toroidal branes in supermembrane and matrix theory, Phys. Rev. D 66 (2002) 085006 hep-th/0206116.
[14] A. Brandhuber, J. Gomis, S.S. Gubser and S. Gukov, Gauge theory at large-N and new G_{2} holonomy metrics, Nucl. Phys. B 611 (2001) 179 hep-th/0106034.
[15] R.L. Bryant, and S. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829.
[16] G.W. Gibbons, D.N. Page and C.N. Pope, Einstein metrics on S^{3}, R^{3}, and R^{4} bundles, Commun. Math. Phys. 127 (1990) 529.
[17] M. Cvetič, G.W. Gibbons, H. Lu and C.N. Pope, Hyper-kaehler calabi metrics, L^{2} harmonic forms, resolved M2-branes and $A d S_{4} / C F T$ (3) correspondence, Nucl. Phys. B 617 (2001) 151 hep-th/0102185.
[18] P. Candelas and X. C. de la Ossa, Comments On Conifolds, Nucl. Phys. B 342 (1990) 246.
[19] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB-resolution of Naked singularities, JHEP 08 (2000) 052 hep-th/0007191.
[20] B.S. Acharya, On realising $N=1$ super Yang-Mills in M-theory, hep-th/0011089.
[21] M. Atiyah, J.M. Maldacena and C. Vafa, An M-theory flop as a large-N duality, J. Math. Phys. 42 (2001) 3209 hep-th/0011256.
[22] P. Bozhilov, Probe branes dynamics: exact solutions in general backgrounds, Nucl. Phys. B 656 (2003) 199 hep-th/0211181.
[23] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and series, v. 3. More special functions, NY, Gordon and Breach, 1990.
[24] P. Bozhilov, to appear.
[25] U. Gursoy and C. Núñez, Dipole deformations of $N=1$ sym and supergravity backgrounds with $U(1) \times U(1)$ global symmetry, Nucl. Phys. B 725 (2005) 45 hep-th/0505100.
[26] J.M. Maldacena and C. Núñez, Towards the large- N limit of pure $N=1$ super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 hep-th/0008001.
[27] N.P. Bobev, H. Dimov and R.C. Rashkov, Semiclassical strings, dipole deformations of $N=1 S Y M$ and decoupling of $k k$ modes, hep-th/0511216.
[28] J.M. Pons and P. Talavera, Semi-classical string solutions for $N=1$ SYM, Nucl. Phys. B 665 (2003) 129 hep-th/0301178.
[29] S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 hep-th/0503201.

[^0]: ${ }^{1}$ See also (11) and 12 .

[^1]: ${ }^{2}$ The same type of embedding was previously used in for obtaining new membrane solutions in flat space-time.

[^2]: ${ }^{3}$ Actually, these expressions for E and \mathbf{P} are always valid for the background we use in this paper.

[^3]: ${ }^{4}$ This is also true for all other embeddings further considered.

