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1. Introduction

The paper [[[] by Gubser, Klebanov and Polyakov on the semiclassical limit of the string/
gauge theory duality initiated also an interest in the investigation of the M-theory lift of
this semiclassical correspondence and in particular, in obtaining new membrane solutions
in curved space-times and relating their energy and other conserved charges to the dual
objects on the field theory side [B]-[L0].

M2-brane configurations in AdS; x S* space-time, with field theory dual Ax_1(2,0)
SCFT, have been considered in [J—H] and [§]. In [f], rotating membrane solution in AdS7
have been obtained. Rotating and boosted membrane configurations was investigated
in [ff]. Multiwrapped circular membrane, pulsating in the radial direction of AdS7, has
been considered in []. A number of new membrane solutions have been found in [f]
and compared with the already known ones. Membrane configurations in AdSs x S7,
AdSy x QYb!, warped AdSs x MS and in 11-dimensional AdS-black hole backgrounds

have been considered in [{].! In [ff] and [§], new membrane solutions in AdS, x S have

See also ] and [@]




been also obtained, by using different type of membrane embedding.? An approach for
obtaining exact membrane solutions in general M-theory backgrounds, having field theory
dual description has been proposed in [[J]. As an application, several types of membrane
solutions in AdS; x S” background have been found. In a recent paper [[]], p-branes in
AdSp have been examined in two limits, where they exhibit partonic behavior. Namely,
rotating branes with energy concentrated to cusp-like solitons and tensionless branes with
energy distributed over singletonic bits on the Dirac hypercone. Evidence for a smooth
transition from cusps to bits have been found.

To our knowledge, the only paper devoted to rotating membranes on G manifolds is [{],
where various membrane configurations on different G2 holonomy backgrounds have been
studied systematically. In the semiclassical limit (large conserved charges), the following
relations between the energy and the corresponding charge K have been obtained: E ~
K2 E~K?3 E-K~K'/3 E—-K~IK.

Here, our approach will be different. Taking into account that only a small number
of G2 holonomy metrics are known exactly, we choose to search for rotating membrane
solutions on one of these metrics, namely, the one discovered in [[4]. In section [}, we
describe the G holonomy background of [[4] and its reduction to type ITA string theory. In
section B, we settle the framework, which we will work in. In section |, we obtain a number
of exact rotating membrane solutions and the explicit expressions for the corresponding
conserved charges. Then, we take the semiclassical limit and derive different energy-charge
relations. They reproduce and generalize part of the results obtained in [|], for the case of
more than one conserved charges. Section [ is devoted to our concluding remarks.

2. The G, holonomy background and its type ITA reduction

The background is a one-parameter family of G5 holonomy metrics (parameterized by rg),
which play an important role as supergravity dual of the large N limit of four dimensional
N =1 supersymmetric Yang-Mills. These metrics describe the M theory lift of the super-
gravity solution corresponding to a collection of D6-branes wrapping the supersymmetric
three-cycle of the deformed conifold geometry for any value of the string coupling constant.
The explicit expression for the metric with SU(2) x SU(2) x U(1) x Zy symmetry is given

by [[4]

7
ds2 = Z e @ e, (2.1)
a=1
with the following vielbeins

el = Alr)(or = %1), ¥ =A@r)(02 %2,
¢’ = D(r)(o3 — X3) , ' = B(r)(o1+ %) ,
¢ = B(r)(o2+%2),  ®=nC(r)(o3 +T3) .
e’ = dr/C(r), (2.2)

2The same type of embedding was previously used in [@ for obtaining new membrane solutions in flat
space-time.



where
1

1
A= m%(r —3r9/2)(r +9r9/2), B = E\/(T " 3r0/2)(r — 970/2),

o \/ (0= 90/ +9r0/2) (2.3)

(r—3ro/2)(r 4+ 3r¢/2)’
and

o1 = sintsin de + cospdf, ¥y = sin ¢ sin Odg + cos pdb,
o9 = cos sin Od¢ — sinydl, Yo = cos ¥ sin0dg — sin 1/~1d§,
03 = cos Ode + di, Y3 = cos Odg + dip. (2.4)

This metric is Ricci flat and complete for » > 9r¢/2. It has a Ge-structure given by the
following covariantly constant three-form

ord
d = 1—60€abc (ca Nop Noe— g ANEp AXe)
27r2 8172
+ d[% <7“2— 4T0> (0'1/\214-0'2/\22)4-%] (7“2— 8T0>03A23:|,

which guarantees the existence of a unique covariantly constant spinor [[[4].

The metric under consideration is a U(1) bundle over a six-dimensional manifold. The
circle, parameterized by the vielbein €%, has its size at infinity set by 7o, because C' — 1
when r — oco. Let us note that the size of the circle at infinity, determines the Type ITA
string coupling constant [[[4]. For r — 9ry/2, C' — 0 and the circle shrinks to zero size.

In order to obtain the behavior of the metric for r — oo and r — 9r9/2, one can
rewrite it as follows

ds3 = dr?/C* + A*((g")* + (6°)%) + B*((¢°)° + (¢")?) + D*(g°)* + ro C*(¢°)*, (25)
where

g1 = —sinf1d¢; — cos iy sin Oadpo + sin 1 dhs,
92 = df, — sin vy sin Oadps — cos Y1 dbs,

g3 = —sin f1d¢1 + cos 1 sin Oadps — sin )i dhs,
g* = dby + sin 1y sin Oade + cos 1 dbs,

g° = dip1 + cos O1dgy + cos Oadeo,

g6 = dipy + cos 01dpy — cos O2dps.

Then the asymptotic behavior of the metric at infinity is given by [[[4]

(67 + sin® 0;d¢?) | +r0(g°%)*.

2 2 2

1 1

2 2, .2 A z
ds® =dr*+r 9 <dw1 + E_l cosH,dgbZ) + 62

i=1



This geometry is that of a U(1) bundle over the singular conifold metric with SU(3)
holonomy. The base of the cone is described by the Einstein metric on the homogeneous
space TH1 = (SU(2) x SU(2))/U(1) where the U(1) is diagonally embedded along the
Cartan generator of the SU(2)’s. Therefore, at infinity the metric is topologically R X
S! x §2 x S3.

In the interior, the metric is non-singular everywhere and near r = 9r(/2 it behaves as

2
ds* ~ dp? + %Tﬁ (97 + (62 + (7)) + T [(65)7 + (6" + (4°)7]

where p? = 8ro(r — 9r¢/2). Hence, there exist an S3 of finite size and topologically the
space becomes R* x S3. As far as A = D and C = D as r — 9r(/2, in the interior the
metric has enhanced SU(2) x SU(2) x SU(2) x Zo symmetry. It can be shown [[[4], that
the metric we get when r — 9r(/2, is the previously known asymptotically conical metric
of G holonomy on the spin bundle over S? [[§-[7).

An interesting particular case is when the function C' in (R.§) vanishes, and the metric
of the resulting six-dimensional manifold is given by [[[4]

dsg = dt2 + A2 [(0’1 — 21)2 + (0'2 — 22)2] + B2 [(0'1 + 21)2 + (0’2 + 22)2] (26)
+ D?*(03 — ¥3)?,  dr = Cdt.

We note that setting C' = 0 reduces the symmetry to SU(2) x SU(2) x Z3 which is precisely
the symmetry of the deformed conifold. In this way, one recovers the known metric of SU(3)

holonomy on the deformed conifold geometry [L§. Actually, after appropriate change of
the coordinates [[4], the metric (R.6) takes the form [[9]

i = K () { g a7+ (0] + i (7/2) [0 + ()

+ Jeosh (r/2) [ + 61}
where

[sinh(27)/2 — 7]1/3
sinh(7) '

K(r) =

Asymptotically, this metric is also conical and the base of the cone is topologically S? x S3.

The metric (R.1))-(R.4) can be used to describe a four-dimensional vacuum of the type
R!'3 x X7, where X7 is the G5 manifold, with four-dimensional N' = 1 supersymmetry.
The metric under consideration has a U(1) isometry which acts by shifts on an angular
coordinate. Hence, one can reduce it along this U(1) isometry to obtain a Type IIA solution
by using that

ds?, = e 29352, + 1973 (duyy + C,dzt)?,

where ¢ and C), are the Type IIA dilaton and Ramond-Ramond one-form gauge field
respectively. If we identify x11 with 19, the reduction to ten dimensions give the following



Type IIA solution [[i4]

d
ds?y =y C {dat 5+ A2 [(9)? + (6®)%] + B? [(6) + (¢1)%] + D*(¢°)*} + 1/ g ,

e =303, Fy =sin6idey A dby — sin adgy A dby. (2.7)

This solution describes a D6-brane wrapping the S? in the deformed conifold geometry. For
r — oo, the Type IIA metric becomes that of a singular conifold, the dilaton is constant,
and the flux is through the S? surroundmg the wrapped D6-brane. For r — 9ry/2 = € — 0,
the string coupling e® goes to zero like 64, whereas the curvature blows up as €~ Just
like in the near horizon region of a flat D6-brane. This means that classical supergravity
is valid for sufficiently large radius. However, the singularity in the interior is the same
as the one of flat D6 branes, as expected. On the other hand, the dilaton continuously
decreases from a finite value at infinity to zero, so that for small rq classical string theory
is valid everywhere. As explained in [[[4], the global geometry is that of a warped product
of flat Minkowski space and a non-compact space, Yy, which for large radius is simply the
conifold since the backreaction of the wrapped D6 brane becomes less and less important.
However, in the interior, the backreaction induces changes on Yg away from the conifold
geometry. For r — 9rg/2, the S? shrinks to zero size, whereas an S? of finite size remains.
This behavior is similar to that of the deformed conifold but the two metrics are different.
If one mod out the initial eleven-dimensional metric by the following Zx action [L4]

ZNn:pg — Yo +7/N

with fixed points located on the S3, then the size of the circle parameterized by 1, goes to
zero. As a result, the local geometry at r ~ 9ry/2 becomes singular, with Ax_1 singularity
fibered over S3, i.e. the so-called singular quotient [R(], [RI]. After compactification to
Type IIA theory, it describes N coincident D6-branes wrapped on the supersymmetric S3
of the deformed conifold.

3. The approach

In this section, we settle the framework, which we will work in. Actually, we will use the
general approach developed in [B]
We start with the following membrane action

1 ) o
S = /d3§£ = /d3§ {4_») [GOO — 2N Go; + NN G — (20°Ty)? det Gi]} + T23012} :
(3.1)

where
Grn = gun(X)0m XM, XN, Borg = bynp(X)0 XM 01 XN 0, X7,
=90/0¢™, m=1(0,i9) =(0,1,2), M =(0,1,...,10),
are the fields induced on the membrane worldvolume, A™ are Lagrange multipliers, 2™ =
XM (¢) are the membrane embedding coordinates, and T is its tension. As shown in [RZ],



the above action is classically equivalent to the Nambu-Goto type action

1
SNCG = 1y / d3¢ (x/— det G — ésm"pamXMBnXNapXPbMNp>

and to the Polyakov type action

T 1

n

where 4™ is the auxiliary worldvolume metric and v = det vy,,. In addition, the action

(B.1)) gives a unified description for the tensile and tensionless membranes.
The equations of motion for the Lagrange multipliers A™ generate the constraints
Goo — 2)\‘7G0j + )\i)\jGij + (2)\0T2)2 det Gz‘j =0, (3.2)
Goj — N'Gyj = 0. (3.3)

Further on, we will work in the worldvolume gauge A* = 0, A’ = const in which the action

(B-1) and the constraints (B.2), (B.3) simplify to

1
ng = /d3£ {N |:G00 — (2)\0T2)2 det ng} + TQB(]12} R (34)
Goo + (2)\0T2)2 det Gij =0, (35)
Goi = 0. (3.6)

Let us note that the action (B.4) and the constraints (B.5)), (B.6]) coincide with the usually
used gauge fixed Polyakov type action and constraints after the following identification of
the parameters (see for instance [f])

20T, = L.

Supposing that there exist a (non-fixed) number of commuting Killing vectors 9/dx*,
which leads to

Ougun =0,  Iubunp =0, (3.7)
we will search for rotating membrane solutions in the framework of the following embedding
(XM = (XK X)), Ak, = constants)

XH(E™) = XH(1,0,0) = Al &™ = AjT + A6+ Aho,  XU(E™) = Z%o0). (3.8)
The above ansatz reduces the Lagrangian density in the action (B.4) to (2’* = dZ*/do)

1

£ = 3

[Kap(9)Z27" +244(9,0)2' = V(g.0)] (3.9)
where

Kap(g) = = (2A°T2)* AYAY (GuasGpor — Garuow) -

Aa(9,0) = (2X°T2)" AYAYAS (Gaup — GapGuw) + 2\ ToAGA by,

V(9,5) = —AG A g + (2X°T2)” AYAYAZAS (9197 — Gpupvn) — N ToAGAL NSy
L4 does not depend on 7 and § because of (B.7) and (B.9).



Now, the constraints (B.§) and (B.6) can be written in the form

K 7" 7" + U =0, (3.10)
AyAY g =0, (3.11)
AG (guaZ" + A3 gu) =0, (3.12)

where U =V + 4)\0A§733, and

2 .0 a
2)‘07)5 = (2)‘0T2) AlAT (guugpa - gupgua) Z'
2 40 v
+ (2X\0T) 7 AYATAS (guwgpn — Gungup) + 2\ ToA§ A b, (3.13)

are constants of the motion [{].
Due to the independence of £4(o) on X*, the momenta

1
P, = / d*¢p, = 0 / / dddo [A§gu + 2\ ToAY (buwaZ"™ + Abbup)] (3.14)

are conserved, i.e. they do not depend on the proper time 7.

In this article, we are interested in obtaining membrane solutions for which the condi-
tions (B.11)), (B.17) and P = constants are satisfied identically by an appropriate choice of
the embedding parameters Al,. Then, the investigation of the membrane dynamics reduces
to the problem of solving the equations of motion following from (B.9), which are

a,bc

1
K Z" + 15K, 2% 2 — 20,4y Z" + §aaU =0, (3.15)
where

a,bc

1 1
FK - 5 (acha + 80Kba - aaKbc) ) 8[(11417] = 5 ((%Ab — 3bAa) ,

and the remaining constraint (B.1(). Finally, let us note that if the embedding is such
that the background seen by the membrane depends on only one coordinate x® , then the
constraint (B.10) is first integral of the equation of motion (B.17) for X*({™) = Z%(0), and
the general solution is given by [f]

Xa K 1/2
o (X% :ao+/Xa (— U““) dz, (3.16)
0

where o9 and X are arbitrary constants. Namely this solution will be used in the next

section in the following form

o (X7) = / Y (- KU> " (3.17)

a
min

Also, the normalization condition

2m Koz [ K.\ /2
21 :/ do = 2/ <— ““) dx (3.18)
0 o U

min

will be imposed, which means that the two periods must be equal.



4. Exact rotating membrane solutions and their semiclassical limits

The M-theory background, which we will use from now on, has the form
I72dsY = —dt* 4 61 yda’ dz’ + ds?, (4.1)

where [17 is the eleven dimensional Planck length, (I,J=1,2,3) and ds2 is given in (R.1))-
(B4). In other words, the background is direct product of flat, four dimensional space-time,
and a seven dimensional GGo manifold.

As already mentioned above, we will search for solutions, for which the background
felt by the membrane depends on only one coordinate. This will be the radial coordinate
r, i.e. the rotating membrane embedding along this coordinate has the form r = r(o).
Then, according to our ansatz (B.§), the remaining membrane coordinates, which are not
fixed, will depend linearly on the worldvolume coordinates 7, 6 and 0. The membrane
configurations considered below are all for which, we were able to obtain ezact solutions
under the described conditions.

4.1 First type of membrane embedding

Let us consider the following membrane configuration:
1
A9
Xt=r(0), XS=0=Ar, X °=0=A07; (Ao.Ay) =0 7ALA]. (4.2)

X0=t=A07+ = [(Ag.A1)d + (Ag.A2) o], X' =Ar+ A6+ Ao,

It corresponds to membrane extended in the radial direction 7, and rotating in the planes
given by the angles 6 and 0. In addition, it is nontrivially spanned along X° and X’. The
relations between the parameters in X and X! guarantee that the equalities (B.11), (B-12)
and 773 = constants are identically satisfied. At the same time, the membrane moves along
t-coordinate with constant energy F, and along X! with constant momenta P;. In this
case, the target space metric seen by the membrane becomes
_ 2 2 _ I

goo = gu = —l1, g7 =01015,  Gua = grr = 20

ge6 = Gog = 5%1 [AQ(V”) + BQ(T)] » 999 = Ygg = l%l [AZ(T) + BQ(T)] ’

969 = 9oy = —I11 [A*(r) — B(r)] . (4.3)

Therefore, in the notations introduced in (Bg), we have u = (0,1,6,9) = (¢,1,6,0), a =
4 = r. The metric induced on the membrane worldvolume is

Goo = —1; [(AD)* — AT — (Ag)*A% — (A5)*B7],

7012
Gy =1 My, Gi=103Mp, Gxn=I} [M22 + E} ,

where
(Ao-Aj) (Ag.Aj)
(a9*

M;; = (Ai.Aj) — AF = A§ £ A, (4.4)



The constants of the motion 732, introduced in (B.13), are given by

2207211,
Ap

PP = 2\°T31}, (M My — ASMy), P =P3=0.

P = [(Ag. A1) Mia — (Ag.Ag) M), (4.5)

The Lagrangian (B.9) takes the form

1 My
‘CA(J) = N (I(rrr/2 - V) s Ky = _(2)‘0T2l%1)2ﬁ’

V = (20°T3l8))% det M + 13, [(AD)” — AF — (A5)A% — (A5)2B?].

Let us first consider the particular case when Ay = 0,i.e. 6 = 6. From the yet unsolved
constraint (B.10)

K+ U =0, U=V+4\"AP2,

one obtains the turning points of the effective one-dimensional periodic motion by solving
the equation 7’ = 0. In the case under consideration, the result is

2

3u,
min = 3, mar = =1124/1 0 1] > 3L,
T T (& < + ZQ(ABL)Q + )

ro=—1|2 1—1—37%2)—1 <0, [=3ry/2
2 — ZQ(AS—)Q ) - 0/ 4

where we have introduced the notation

ug = (2)\0T2111)2 det Mz‘j + (A8)2 — A% + 4)\01\57)3/[%1 (4.6)
== (A8)2 - A% - (2)\0T2l11)2 det Mzg

Applying the general formula (B.17), we obtain the following expression for the mem-
brane solution (Ar =r — 3I)

" 1/2 0 1/2
U('r) :/ [_M] dt = 16A T2l11 MlllAV“
3

1 U(t) Aar (7“1 — 31) (3l — 7“2)

Ar  Ar Ar Ar Ar

FO (172, -1/2,-1/2,1/2,1/2,1/2;3/2; - =, - = —— - _—_ A7

D(/a /a /a/)/’/ﬂ/v 2la 4[5 6[, 3[—7"2’7"1—3l ( )

where Fl()S) is a hypergeometric function of five variables. The definition and some proper-

ties of the hypergeometric functions F l()n) (a;bi,...,bp;c; 21, ..., 2,) are given in appendix [A].
The normalization condition (B.18) leads to (Ary = 71 — 31)

2 =2 /T1 [_ K”"(t)] 1/2 dt = 3200yl (M)
s L U@ AG (31— o)/

Fy) (1/2;—1/2,—1/2,1/2,1/2,1/2;3/2;_&“1 CAn A An >:

— 1
207 4l 6l 3l—ry’



167T)\0T2l11 (Mlll)1/2 A’I“l A’I“l AT’l A’I“l
AT (31—rp)'/? 207 4l 6l 31—y

1 0 1/2 1/2 1/2 -1/2 -1/2
_ 6 A Tglll (Mnl) <1+ A?“1> <1+ﬂ> <1+ﬂ> <1 + A?“l >
AL (3l—r2)1/2 21 4l 6l 3l — 1o

(4) 1 1 1 1
><PjD 1/27 _1/25 _1/25 1/2? 1/25 ) 17 21 al 6l 31— . (48)
< Itz Tt ag THay 1+°58

F <1/2;—1/2,—1/2,1/2, 1/2,51;

Now, we can compute the conserved momenta on the obtained solution. According to

(B.14), they are:
w212,
20

2 r1 1/2 4 2T l3 M l3 1/2
pezpé:iél/\ar/ [_Krr(t):| B2(t)dt = T Tol} ( 111 2)
A 31 U(t) 3(31—ry)Y
A?“l _A?“l _A?“l A?“l >

207 4l 6l 3l—r
Am2 T3, (My,13) 2 ArNY2 (AN A\ Y2 Ary \ 2
_ 4Dk (Ml Ar (1422 1420 1420 14 =1
3(3l—ry)'/? 21 4] 61 3l—r9

1 1 1 1
x FY) (1/2-—1/2 —-3/2,1/2,1/2,;2; ) : (4.10)
D ) ) ) I 9 <y 20 4] 6l ° 3l—
1+A—r1 1+A—r1 1+A_r1 1+T:2

E=-P= A, P ="—"1lA,, (4.9)

Ar FY (3/2; —1/2,-3/2,1/2,1/2,;2; —

Our next task is to find the relation between the energy E and the other conserved
quantities P, Py = Fj in the semiclassical limit (large conserved charges). This corresponds
to 71 — oo, which in the present case leads to 3u3/[I*(Ag)?] — oo. In this limit, the
condition ({.§) reduces to

AF = 2v3X0Ty0y, ML,

while the expression (4.10)) for the momentum Py, takes the form

2
_p _ 27773 ar1/2_ %o
Py = P; = /3n*Tl}, M TiE
Combining these results with ([L.9), one obtains
2 (2 _ P2 2 713 \2 2 2 2112
{E (E? = P2) — 2nTy13)) {(A1 x A2)2 B2 — (A x Ag) x P] }} (4.11)

—(4V3r2Tyi3,)? B2 [A%EQ _ (Al.P)Q] P2=0, (A1xAy), =ecryAlAK.

This is fourth order algebraic equation for E?. Its positive solutions give the explicit
dependence of the energy on P and Py: E? = E?(P, ).

Let us consider a few particular cases. In the simplest case, when Aé =0,ie. P =0,
and AL = cAl, which corresponds to the membrane embedding (see ({.9))

X0=t=A)r, X'=A(5+co), X'=r(0), X=0=ASr=X"=0=A)r

,10,



({.11]) simplifies to
E? = 4V3r* Dol | A1 | Py. (4.12)

This is the relation E ~ K2 obtained for Gs-manifolds in [B. If we impose only the
conditions A} = 0, and A! remain independent, (fI1) gives

E? = (2n°Thl3))? (A1 x Ay)* +4V372Thl3, | Ay | . (4.13)
Now, let us take A} # 0, Al = cA{. Then, ({.11) reduces to
E? [(B? — P?)? - (4V3r*Tol}, AT PR | + (4V3r2Tot))? (A1) P =,
which is third order algebraic equation for E2. If the three-dimensional vectors A; and P
are orthogonal to each other, i.e. (A1.P) =0, the above relation simplifies to
E? =P? 4+ 432 Thl3, | Ay | Py. (4.14)

The obvious conclusion is that in the framework of a given embedding, one can obtain
different relations between the energy and the other conserved charges, depending on the
choice of the embedding parameters.

Now, we will consider the general case, when Ay # 0, i.e. § # 6. The turning points
are given by

k243 3u2
Tmin = 3,  Tmae =71 =12 + 0 — + k|,
' \/ TR+ (89)?)
k2 +3 3u2 (AD)? = (A7)?
ro = —1 2 + O k|, k=2 07 < o,1]
[ \/ 4 12 ((Ag)2 + (Ag)?) (AG)? + (Ag)?

According to (B.17), the solution for o(r) is
r 1/2 0 1/2
o(r) = / [— KU”Y)] dt = Qs 12 [ Agllll?lr } x  (4.15)
31 (t) [(AD)? + (A5)2] "2 Ll = 30) (8L —12)
Ar Ar Ar Ar Ar )

FO (1/9:21/2.21/2.1/2.1/2.1/2:3/2: — =~ ar. _ar _ar
D</’ /2,712 /2121 23)% =5 = = 3l —ry 1 — 3l

The normalization condition (B.1§) reads
SXOTolyy (Migl)'/?
[(AG)2 + (45)2]* (3L = )"/

P (1/2;—1/2,—1/2,1/2,1/2,;1;—”1 Ary  An __An ):

207 Al 6l 3l—ry
8AOTylqq (My11)Y? y
_ 1/2
[(AD)2 + (A5)2]Y (31 = 7o) /?

Arp\ 2 Arp\ 2 Arp\ Y2 Arp \ V2
14+ 208 14+ 208 14+ 208 1 41
<+2z> <+4z> <+6l> <+3l—r2> * (4.16)
1 1 1 1
FD (1722172, -1/2,1/2,1/2,:1; , , , =1
P (i e )

— 11 —



Computing the conserved momenta in accordance with (B.14)), one obtains the same

expressions for £ and P as in (.9)3, and
AT Tyl A (M 13)

1
5 (PotFy) = x
2 3[(AD?2 + (1)) (81— r)'V?
(4) . A?“l _A?“l _A?“l _ A?“l
anrf) (32 -2, -3/2 2,120 B0 S0 E0

AR Tyl3 A (Myy13)?

+12 —\211/2 12~
3[(AG)?+ (Ag)?] " (Bl —12)
A?“l 1/2 A?“l 3/2 A?“l —1/2 A?“l —1/2
Arp (1+ =2 1+ =2 1+ =+ 1
“<+2z> <+4l> <+61> <+3l—r2> X

(4) ] 1 1 1 1
FD <1/27_/ 3/21/2 1/277 71+ 2[71+ 4l’1+6_l’1+3l*7“2 7(417)

Arq Ary Ary

8r2Tol3 Ay (Miyl5)'?
[(AD)2 + (45)2] 2 (31 = ) 1/2
Ar Ar Ar Ar
FW (1/2,-3/2,-1/2,-1/2,1/2,:1; - —* =1 271 71
D</73/7 / / /777 2l7 4l7 6[7 3l—7”2
O 8mTu Ay (Ml?)'?
(A2 + (A9)2] 2 (3L — ra)1/2

A?“l 8/2 A?“l 1/2 A?“l 1/2 A?“l ~1/2
1+ 21 2n 142 1
<+21> <+4z TG LT x

1 1 1 1
FD (1/2,-3/2,~1/2,-1/2,1/2,:1; , , , (418
D / / / / / 1 + 21 1 + 41 1+ Arl 1+ 31A_r7;2 ( )

(Po — F5) =

DO =

Now, we go to the semiclassical limit 7 — oo. The normalization condition ({.17)
gives
AT)2 721/2_\/—0 1/2
[(AG)? + (A0)?] 7 = 2vBX Tl My,
whereas ([£.17) and ([.1§) take the form
\/_7.[.2T2l5151A:|:M111/2u0
3/2 "
(A2 + (a7
The above expressions, together with ([£9), lead to the following connection between the

energy and the conserved momenta
2
{E2 (E? = P2) — (2n°Tyi3))> {(A1 x A2)2 B2 — [(Ay x Ag) X P]2}} (4.19)

—6(2m2Tul3, )2 B2 [A%EQ - (Al.P)Q] (P(,Q n PG?) — 0.

(PGipe)

DN | =

3 Actually, these expressions for E and P are always valid for the background we use in this paper.

- 12 —



Obviously, ([.19) is the generalization of ({.11) for the case Py # P; and for Py = P
coincides with it, as it should be. The particular cases (f.19), (13) and (f.14) now

generalize to
2 2 73 2 2\ /2
B? = 2V6r2Tal3, | Ay | <P9 +P9~> ,
1/2
B? = (2nT5i3))? (A1 x As)? + 2V6m2 i3, | Ay | <P92 + Pg> :
1/2
E? = P2 4 2V6r2Tol3, | A | <P92 + P0~2> . (4.20)
Finally, let us give the semiclassical limit of the membrane solution (K.1¢), which is

1/4
" 32(4n2Tyl3,)? [A%EQ _ (Al,P)Q} / i wan
) r 21
27 E2 <P92 + Pg)

X

& (172 _1/9. .39, Ar _Ar Ar
R

1/4
32(4m2Ty13,)? [A%EQ - (Al.P)Q}
= . 5 (lA?“)l/2
2
27E? (P} + P?)

Ar\ Y2 Ar\ Y2 Ar\ 2
1+ — 1+ — 1+ —
<+2z> <+4z> <+61>

F® <1;_1/2,—1/2, 1/2,53/2;

X

1 1 1
1+ & 1+ &A1+ 82 )
4.2 Second type of membrane embedding

Let us consider membrane, which is extended along the radial direction r and rotates in
the planes defined by the angles 6 and #, with angular momenta Py and Pj. Now we want
to have nontrivial wrapping along X% and X°. The embedding parameters in X% and
X9 have to be chosen in such a way that the constraints (B.11), (B.13) and the equalities
773 = constants are identically satisfied. It turns out that the angular momenta Py and
P; must be equal, and the constants of the motion 793 are identically zero for this case. In
addition, we want the membrane to move along X° and X! with constant energy E and

constant momenta P; respectively. All this leads to the following ansatz:

X0=t=A)r, X'=Ar, X'=r(0),
X0=0=A57+ A%+ ASo, X°=0=A5r—(AS6+ ASo). (4.22)

The background felt by the membrane is the same as in ([.J), but the metric induced

on the membrane worldvolume is different and is given by
Goo = =111 [(AD)* — A§ — (AJ)*B?], G =4I}, (A})° A%,
2

;
Gio = 42, APASA2, Gy — I2, [@ + 4(Ag)2A2} .

,13,



For the present case, the Lagrangian (B.9) reduces to

2 4

}—(7’7’7'/2 — V) ’ Ky = _(4)\0T21%1)2(A?) c?’

o) = g (
V= U= 009 - A3 - (0)7B7).

The turning points of the effective one-dimensional periodic motion, obtained from the
remaining constraint (B.1)

K, +V =0,

— 3 Y P L A I
7nmin—37 T"maxr = T1 = +W+ >37
ro = —1|2(/1+ 304 —-1] <0, of=(A9)?*- A2 (4.23)
12(A)?

Replacing the above expressions for K,, and V in (B.17), we obtain the membrane
solution:

are given by

U(r)_/r KL 0] 30Tl A BAr 12
31 V(t) AS (r1 — 3) (31 — o)
Ar Ar Ar Ar )

(4)
F 1/2,-1,-1/2,1/2,1/2;3/2; ——, — —
D (/’ ) /?/a/a/a 2l? 4l’ 3l—7°2,7"1—3l

(4.24)

The normalization condition (B.1§) leads to the following relation between the parameters

16A0T 111 ASI3/2 o 4 =
ATl 1l1/2 FO (1/2;_1,_1/2,1/2;1;— T )
Ay (3l —13) A . e

1600 673/2 1/2 —-1/2
_ 6\ Tgln/\ll <1 4 AT1> <1 I ﬂ) <1 n A?”l >
AF (31— 7"2)1/2 2l 41 3l —1ra

1 1 1
xFO (172,21, -1/2,1/2,:1; , , =1. 4.25
R e ) e

In the case under consideration, the conserved quantities are £/, P and Py = P;. By using
(B.14)), we derive the following result for Py = P;

Py = P;

o 87T2T2l:1)’1A?l5/2 A’I“l AT’l AT’l
N 3(31 — o) '/? 207 4l 3l—ro

2T 3 AG 5/2 A A 3/2 A —-1/2
:MArl <1+£> <1+ 7“1> <1+ "1 >

Ar FY <3/2; —1,-3/2,1/2;2; —

3(31 — 7’2)1/2 21 41 3l — 19
(3) 1 1 1
xFp (1/2;—1,—3/2,1/2,;2; ST TR CT . (4.26)
Lt T ay 1+°578
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In the semiclassical limit, (1.25) and (4.26)) reduce to

8V3

™

1671515, A9
NTpli A [(AD)? — Af] V2 p=P= 107l A

(A(T)z = 0 \/§(A6L)3

[(A9)? — AZ)*2.

From here and ([.9), one obtains the relation
E? = P? 4+ 333 (2x Ty, A$)23 P2, (4.27)

In the particular case when P = 0, ({.27) coincides with the energy-charge relation
E ~ K?/3 first obtained for Go-manifolds in [f]. For the given embedding (f£23), the
semiclassical limit of the membrane solution (4.24)) is as follows

27173 A6 2/3
Tuat(r) = 87172 <%) () P (1/2; 1-1/23/2 -5 —%)
(%
22 Tyi3, AS\ /3 A A\ /2
— grl/3 (%) (Bar)'? (1 + 2—[) <1 + 4—;> (4.28)

1 1
x F) (1;—1,—1/2;3/2; ) .

1+ 24714 &
4.3 Third type of membrane embedding

Again, we want the membrane to move in the flat, four dimensional part of the eleven
dimensional background metric (f.1]), with constant energy E and constant momenta P;.
On the curved part of the metric, the membrane is extended along the radial coordinate
r, rotates in the plane given by the angle ¢, = ¢ + ¥, and is wrapped along the angular
coordinate 1)_ = ¢ — . This membrane configuration is given by

X0=t=Ar, XI=Ar X'=r(0),
Yy =AJT - =ATS+Ayo, Y =0 (4.29)

In this case, the target space metric seen by the membrane is

il
C2(r)’

g0 = gi = —lt, g1 =101017,  Gaa = Grr =

21

2
sr =1t (3) €0 o =RD%0) (430)

Hence, in the notations introduced in (B.§), we have u = (0,1, +,—), a = 4 = r. Now, the
metric induced on the membrane worldvolume is

Goo = —l}

02 2 +32 2 ? 2
(AO) _AO_(AO) § C )

_ o _ 7“/2
G = l%l (A7 )2D27 Gia = l%1A1 Ay D? Gy = 5%1 [(Az )2D2 + E} .

,15,



The constraints (B.11), (B.13) are satisfied identically, and 732 = 0. The Lagrangian (B.9)

takes the form

1 _2D?
ﬁA(U) = 4—)\0 (KTTTIQ - V) ) Krr = _(QAOTQZflAl )2§7
2 0\2 2 e (2 ’ 2
V=U=Ii [(Ag)”—Ajg— (Ag) 3 C

The turning points, obtained from (B.1(), read

8
_ %
42(Af)2

Tmin = 31, rmaxmlJ1+ > 3,
1

2
vy

o=l |14+ —> <0, W= (A — A2,
LTS e

For the present embedding, we derive the following membrane solution

2715 Ar

r 1/2 0 - 1/2

a(r) :/ [—K”(t)} at = — 22Tk — [ } X (4.31)

g V) (7 (2) g 72 |3 (r —31) (31— r2)
Ar Ar Ar Ar Ar A

20" 317 4’ 6l 3l—ryr—3l)"

Fy) (1/2;—1,—1,—1,1/2,1/2’ 1/2:3/2;~

The normalization condition (B.1§) leads to

0 - 715 1/2
ATl A 271 )] (4.32)

F (1/2;—1,—1,—1,1/2,1/2;1;—“1 _An_An An o An >:

207 317 4l 6l 3l—ry
AOTyli AT [ 2715 ]WX
2 1/2 {3(3] —r
(a2 (%) —g] " P

A’I“l A’I“l AT’l AT’l 71/2 AT’l 71/2
1+ — 14+ — 14+ —— 1+ — 1
<+2l><+3l><+4l><+6l> R 8

1 1 1 1 1
FY) <1/2-—1 ~1,-1,1/2,1/2,; 1; — ) =1.
Y Y Y Y ) 7 Y ) 3l7 4] 6l7 3l7
I+ &g 1+ Rn Thag 1+tag 1+°57

The computation of the conserved momentum P, = P, in accordance with (B.14) gives

2 73 A+ A— 577 1/2
P, - T T2l11/;o Aj - [33 (;ll )] y (4.33)
— T
(A2 (3)” et :

Ar PP (3/2;—1,—1/2,1/2;2;—&"1 _&n __4n >:

307 6l 3l—ry

,16,



w2 o138 ASAT [ 9517 r/? .
1/2 |93 (3] —

AT’l AT’l 1/2 AT’l 71/2
A 14+ — 14+ — 1
T1<+3l><+6l> TR 8

(3) 1 1 1
1/27 _15 _1/2’ 1/2’ 27 3[ 9 6l 3l— .
< 1 + 1 + Arq 1 + AT‘T12

Let us note that for the embedding ([.:29), the momentum Py,_ is zero.
Going to the semiclassical limit 7y — oo, which in the case under consideration leads

to 9v3 /[412(A)? — 1_, one obtains that ([.39) and ([.33) reduce to

903 1 _ 25272 Tyl AT 13
A [1 ey 2] =2\l AL, Py = e 75
1) 9|1~ )
4 0

These two equalities, together with ([.9), give the following relation between the energy

and the conserved momenta
9

_ 4/3
E? = P* 4 5P — (6m°Tol}i A )23p3, (4.34)

In the particular case when P = 0, (.34) can be rewritten as

N2/
b 3ZP+ 1_(4\/577215@1/\153) |

V2l 9P,

Expanding the square root and neglecting the higher order terms, one derives energy-charge
relation of the type E — K ~ K3, first found for backgrounds of Ga-holonomy in [f].
Now, let us write down the semiclassical limit of our membrane solution ({.31)):

(4.35)

2113 A — 715\ 1/2
Uscl("") = u T2l11A1 <2 l ) X

P, 33

Arl/ngﬁ(1/2;_1,_1,_1,1/2;3/2;_A7“ Ar _Ar AT>:

207 310 4l 6l

mTIR AL (TENYE (AR (AR (AR (AT
P, 38 2l 3l 4l 6l

1 1 1 1
Fgl) 17_15_15_1’1/2ﬂ3/27 2l 9 9 9 6l .
142014 3y vy g O

4.4 Forth type of membrane embedding

Let us consider membrane configuration given by the following ansatz:

X0=t=A)r + AO (A A1) 6+ (Ag.Ag) o], X' =Alr+Als+ ALy

Xt=r(0), dy=AfT, Yo =AyT, ve =99 (4.36)

,17,



It is analogous to ({.2), but now the rotations are in the planes defined by the angles
Yy = 1) + 1 instead of 6 and 6.

The background felt by the membrane is as given in (4.3(). However, the metric
induced on the membrane worldvolume is different and it is the following

21
Goo =~ | (AD)? — A2 — (A2 (— |

2
3> 02—(Aa)2D2

7“/2
Gu =15 My, Gu=10,My,  Gyn=1I [M22 + 02} ;

where M;; are defined in ([.4). The constraints (B.11), (8.12) are identically satisfied, and

the constants of the motion 793 are given by ([.). The Lagrangian (B.9) now takes the
form

1 M
A — 2 0 72 \24411
£50) = 1o (K1 = V), Ky = —2\T03)) ok
21\ 2 ~
V = 2XThlf))? det Myj + 13, | (AG)” — AG — (AG)? <§> C? — (A )2D2]-

Let us first consider the particular case when Ay =0, i.e. ¢ = . The turning points
obtained from the constraint (B.1() now are

8 8
rmin:3l7 7ﬂmaa::Tl:l 1+79u3>3l, 7”2:—1 1+79ug
1= A2(Ag)? 1- ARAD)?

<0,

where w3 is introduced in (f.f). By using (B.17), one arrives at the following membrane
solution

( )_ /r _Krr(t) 1/2 dt— 2)\0T2l11 27Z3M11A’I“
= 31 a2 o]M2 [3(r—31) (3l — o)
[(A5)2 ()" - ]

] 1/2(4.37)

(5) Ar  Ar Ar Ar Ar
F 1/2;-1,-1,1/2,1/2,1/2;3/2; - —, ——, ——, ——— .
XD</’ I B T TR T TR

The normalization condition (B.1§) now gives

ATl [ 2713 M, ]1/2
2 1/2 13(3l—r
(a5 (2)" -] " BOI2)

(4.38)

4) A?"l A?“l A?"l A?"l
1/2;-1,-1,1/2,1/2;1; — — — — =
</”’/’/” 207 4l 617 3l—ry

)\OTQZH [ 2713 My, ]1/2
1/2 _
[ UO] 3 (3l —1r9)
A?“l A?“l A?“l _1/2 A?“l _1/2
1+ =1 “ )1+ =2 1
<+ ><+4l><+61> T X
1) 1 1 1 1
1/2;-1,-1,1/2,1/2,; 1; ) ) ) =1
</ e R R T TR
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In accordance with (B.14), we derive for the conserved momentum Py = P, . the expression

(P- = Py_ =0 as a consequence of Ay = 0):

712T2li1)’1A8L |: 25l5M11 :|1/2
+ 1/2 |33
. 2 333l —r

ﬂ B Arq B
6l’ 3l—7”2 -

Ar FS) (3/2; —1/2,1/2;2; —

7T2T2l:1)’1Aar 25l5M11 1/2 A’I“l 1/2 A’I“l 71/2
s 2 | BEiory AU e S TR %

(A2 (3) =]

FO (12, -1/2,1/2,2, — - %,’l . (4.39)

1+ 5o 1+°52
In the semiclassical limit, ({.38) and (4.39) simplify to
2 9T/2.70 13 12 /2
(A9)

Taking also into account (f.g), we obtain the following fourth order algebraic equation for
E? as a function of P and P,

(B2 (B2 P2 — (3/17°P2) — @nToi%)” { (A1 x Ao)® B — [(Ay x Ay) x PP})

— 2T (37 Tui3,)2 B? [A%EQ - (Al.P)Q} P? =0, (4.40)
Let us consider a few simple cases. When A(I) =0 and Al = cAl, (E40) reduces to
E? = (3/1)2P2 + 272371y}, | Ay | Py, (4.41)

or

3 2727 THI3,12 | Ay |
E=2P /1 11 )
I +\/ + 3P,

Expanding the square root and neglecting the higher order terms, one derives energy-charge
relation of the type EF — K ~ const. If we impose only the conditions A(I) =0, ([40) gives

E? = 21 Tul3))? (Aq x Ag)? + (3/1)2 P2 4+ 2723713, | Ay | Py (4.42)
If we take A} # 0, AL = cAl, (40) simplifies to
E? { [E% - P2 — (3/1)°P?]" - 27(37TT2l§1)2A%Pi} +97(37Ty13))? (AL P)2 P2 =0,

which is third order algebraic equation for E?. Suppose that A; and P are orthogonal to
each other, i.e. (A1.P) = 0. Then, the above relation becomes

E? =P+ (3/1)*P2 + 27237 Tul3, | Ay | Py. (4.43)

,19,



Finally, we give the semiclassical limit of the membrane solution ([£.37)

o s (AN 1 2
O-scl(r) =27 T2l11 ry Al - ﬁ (AIP)

3
Ar _Ar _Ar
20 4 6l

AN 1 Y2 Apl/2 Ar Ar Ar\ T2
=23, () |AZ— = (ALP)? 1+ =) (1+20) (1+ =5
" 2111(3) { 1 g (AP 2 MY TG

1 1 1
x ) (1'—1 —1,1/2;3/2; ) .
D I I I ) I 2 4l 6l
I+ & 1+a 5

T

1/2 A?“l/Q
Py

x ) (1/2; ~1,-1,1/2;3/2; —

Now, we turn to the case A, # 0, when the solutions of the equation r’ = 0 are

l 4(u? — 9A2
Tmin = 31, Tmar =71 = —= 1+U2A2\ll+\/l( (u ) )

V2 42— A2
l 4(u? — 9A?)
= —1/1 2_ A2, |1 — 1- - 7
T2 \/5 +u \l \/ (1—|—u2—A2)2’
l 4(u? — 9A?)
= ———1/1 2_ A2, |1 1- - 7
T3 \/5 +u +\/ (1+u2—A2)2’

l 4(u? — 9A?)
_ 2 _ A2 _ -~ @@
Ty = NG 1+u?— A% 1 \/1 (12 — A2

2 2
u? = <3LE> ., A= (2&) .
IA, A,

Correspondingly, we obtain the following solution for o(r):

o(r) = /T [— K”(t)] v dt = Aol [ 29313 My, Ar v x
3L U®) Ay [(r1—30) (38l —r2) (3l —73) (3 —14)

F (1/2:-1,-1,1/2,1/2,1/2,1/2,1/2;3/2; (4.44)
_g_g_g_ Ar B Ar B Ar Ar

217 417 6[’ 3[—7“27 31—7“3’ 3[—7“477“1—31 ’

For the normalization condition, we derive the result
ATyl 27313 My, 1/2
— X (4.45)
A (3L —1ra) (3l —r3) (3l — 1y)

FO (1/2;-1,-1,1/2,1/2,1/2,1/2; 1;
A?“l _A?“l _A?“l A?“l A?“l A?“l )

207 47 6l 3l—ry 3l—ry 3l—ry

0 7273 1/2 —-1/2
1 (8 103) ()
A, (3L —1ra) (3l —r3) (3l — 1y) 21 41 6l

,20,



1 Ar -1/2 1 Ar -1/2 14 Ar 71/2><
+3l—7"2 +3l—’l“3 3[—7“4

FO (1/2;-1,-1,1/2,1/2,1/2,1/2; 1;

1 1 1 1 1 1 )_1
21 41 6l 3l— 9 31— 3 31— = 1.
b A LA Lhan TR L e T i

The computation of the conserved quantities P, and P_ gives

A 2515 M4
Py = m*hl} =%
TR [3(3l—r2)(3l—r3) Bl — 4

(4) Arq Arq Arq Arg
F 2:-1/2,1/2,1/2,1/2;2; — — — — =
D (3/ ) / ’ / ’ / ’ / ) <y 6l ) 3l—7”2, 3[—7"3’ 3l—7”4

1/2
)} Ary x (4.46)

1/2
oy AT [ 2515 My, ] /
AO 3 (3l — 7“2) (3l — 7“3) (3l — 7“4)

A’I“l 1/2 AT’l 71/2 AT’l 71/2 A’I“l 71/2
A 1+ — 1 1 1
”( + 6l> ( +3l—r2> ( +3l—r3> ( +3l—7~4> X

1 1 1 1
Fy (1/2-—1/2 1/2,1/2,1/2;2; )
) ) ) ) ? ? 6l ) 3[7 ) 3l7 ) 3l7 )
Lt x 1550 1+ 50 1+

97317 My, 1/2 .
(3[—7“2) (3[—7“3) (3[—7“4)
FO (12 -1,-2,-1,1/2,1/2,1/2,1/2; 1;
AT’l _A’I“l _A’I“l _AT‘l B AT’l _ A’I“l B AT’l o
207 317 4l 6l 3l—ry 3l—r3 3l—ry)

P_ =Ty}, [ (4.47)

27317 My, 12 y
(3l —7“2) (3l —7“3) (3l —7“4)

A?“l A?“l 2 A?“l A?“l _1/2
(1+2—l) <”7) (1+4—l) (”W) "

A’I“l 71/2 A’I“l 71/2 A’I“l 71/2
1 1 1
< +3l—r2> < +3l—r3> < +3l—r4> %

an (1/27 _17 _27 _17 1/27 1/27 1/27 1/27 17

1 1 1 1 1 1 1 )
21 3 7 4] 7 6l 7’ 3l—roy? 3l—r3 "’ 31— :
1+ Ari 1+ Ari 1+ Ari 1+ Arqi 1+ ATZQ 1+ AT:S 1+ Ar?

Let us now take the semiclassical limit 7 — oo. In this limit, ([.45), (44) and (f.47)
reduce correspondingly to

4 A
Ay =3\ MY?, P = ngTQZi‘llQMf{QA—O

() - (55)
1A, Ay

0

1
P = 2o ol My
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These equalities, together with (f.9), lead to the following relation between the energy F

and the conserved charges P, Py and P_:

(B2 [B° P2 — (3/20°P] - e Totdy)? { (Ar x Ao)® B> — [(Ay x Ag) x PP}

(672513, E? [A%EQ . (Al.P)Q] P2 =0. (4.48)

We remind the reader that the above relation is only valid for P_ # 0, whereas we can
always set P or P, equal to zero. Below, we give a few simple solutions of ([.45).
Choosing A = 0 and AL = cAl, one obtains

E? = (3/20)* P + 6n°Tul3, | A1 | P, (4.49)

which can be rewritten as

3 Sm2THI3.12 | Ay | P
g=3p |14 5D L1! .
2l 3P?

Expanding the square root and neglecting the higher order terms, one arrives at

3 P_
E= =P, 42Tl | Ay | —.
Py

21
If only the conditions A} = 0 are imposed, ({4.48) gives
E? = (27°Tul3))? (A x A2)* 4 (3/20)* P2 + 67°Tul3, | Ay | P_. (4.50)

If we choose A} # 0, Al = cAf, then ([L4§) simplifies to a third order algebraic equation
for E?

E? { [E2 - P2 — (3/21)2P2]% - (GWZngfl)ZA%PE} + (672Tul3,)2 (A1.P)2 P2 = 0.

If (A1.P) = 0, the above relation reduces to

E? = P? + (3/21)° P} + 67°Tult, | Ay | P (4.51)
Finally, let us write down the semiclassical limit of the membrane solution (4.44):
O'Sd(’l") = <347P> |:A1 — ﬁ (AlP) :| Ar /

Ar  Ar Ar Ar
FW(1/2;-1,1,-1,1/2:3/2,— = - = - = =
X D </7 9y 9 /73/7 217 3l7 4l7 6l>

e ) M WeP)

Ar Ar\ ! Ar Ar\ 1?2
1/2 =
X Ar <1+—2l><1+3l> <1+4l><1+61>

1 1 1 1
x FY <1'—1 1,-1,1/2;3/2; )
D ) P I ) I 2l 3l 4] 6l
I+ 1+ 5 1+ 5 L+ 5

T T

Concluding this section, we note that more membrane solutions are given in ap-
pendix [B. The reason is that although different, they exhibit the same semiclassical be-
havior as some of the solutions described here. Namely, they lead to the same dependence

of the energy on the conserved charges in this limit.
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5. Concluding remarks

In this paper, we considered the membrane dynamics on a manifold with exactly known
metric of Go-holonomy in M-theory. More precisely, we obtained exact rotating membrane
solutions and explicit expressions for the energy E and the other momenta (charges), which
are conserved due to the presence of background isometries. They were given in terms of
the hypergeometric functions of many variables F' l()n) (a;b1,...,bp;¢21,. .., 2,), where for
the different membrane configurations considered, n varies from two to seven.

In connection with the dual four dimensional N/ = 1 gauge theory, we investigated
the semiclassical limit of the conserved quantities and received different types of relations
between them. In particular, we reproduced the energy-charge relations £ ~ K2 E ~
K23 and E — K ~ K/3, first found for rotating membranes on backgrounds of Ga-
holonomy in this limit in [[f]. Moreover, we found examples of more complicated dependence
of the energy on the charges. The most general cases considered, lead to algebraic equations
of third or even forth order for the E? as a function of up to five conserved momenta.
Presumably, these may correspond to operators of more general type in the dual field
theory. Also, they could be connected with the lack of conformal invariance.

As already observed in [fj] for rotating membranes on G5 manifolds, one may have the
same energy-charge relations in the limits of small and large charges. Such are E ~ K1/2
and E ~ K%/ [H. Let us give an example, which confirms this observation. For large
charges, according to ([l.19), the following equality holds:

By =2(V3r* Do}y | Ay |)V2(P))M2.

On the other hand, taking the small charge limit in the expression ({.1() for Py, which
corresponds to Ary — 0, one obtains the relation

E, = 202mThl3, | Ay |)Y2(P5)Y2.

Hence, in both cases, we have the same E ~ K1/2 behavior. As a consequence, the ratio
of the two energies is given by:

E/Es = (3/4)V(Py/ P,

Here, we did not investigate the limit of small conserved charges. However, the exact
expressions for all quantities which we are interested in, are written in two forms: one
appropriate for considering the large charges limit, and the other - for small ones. That is
why, the last limit can be always done.

For comparison, we now give the known results about the different energy-charge
relations in the semiclassical limit, for membranes moving on other curved M-theory
backgrounds. So far, such relations have been obtained for the following target spaces:
AdS, x S, AdSy x Q411 warped AdS5 x MO, and 11-dimensional AdS-black hole B, B,
B, [§-[Ld]. If we denote the conserved angular momentum on the AdS-part of the metric
with S and on the other part with J, the known expressions for E(S,J) are as follows.
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1. On the AdS, x S? backgrounds [B, B, B, B-[0]

J? S
_ G~ §l/8 _ G = 1/3 i —_S~nZ
EFE-S5~87 E—-8=¢8 +0251/3+..., E-S lnc,
!
E=J+..., E—clJ:J—éanbJan—i—..., E=c18 + cyJ?.
a,b=1
2. On the AdS; x QY1'! background [f]
E-S~m2 E-J+. .
c

3. On the warped AdSs; x M® background [f]
E—Swlng, E—-J=c+....
4. On the 11-dimensional AdS-black hole background [f]
E—cS~ S5

It seems to us that an interesting task is to find rotating string configurations in type
ITA theory in ten dimensions, which reproduce the energy-charge relations obtained here,
for rotating membranes on an eleven dimensional background with Gy holonomy. This
problem is under investigation [P4], and now we give an example of such string solution.

As explained in section [, the reduction to ten dimensions of the M-theory background
(1)) is given by (R.7), which describes a D6-brane wrapping the 83 in the deformed conifold
geometry. Let us consider the following string embedding in (2.7):

X0 = AT, X! :AéT, r=r(o), 6 :Ang, 02 ZASQT, 1 =¢1=¢2=0.

This ansatz corresponds to string, which is extended along the radial direction r, rotates in
the planes defined by the angles #; and 62 with angular momenta Py, and Fp,, and moves
along XY and X! with constant energy E and constant momenta Pj respectively. It can
be shown that for large conserved charges, the dependence of the energy E on Pr, Py, and
Py, is

E% = P? 4 const (]3921 + P922)1/2 .

Thus, this string configuration has the same semiclassical behavior as the membrane in
).

To our knowledge, none of the energy-charge relations obtained here for membranes
moving on a Go manifold correspond to usual relations, coming from operators in the dual
N =1 gauge theory. The most plausible explanation is that the Kaluza-Klein modes are
not fully decoupled from the pure SYM theory excitations. In this respect, a good idea
for exploration of the problem is the one proposed in [Rg]. In this article, the SL(3,R)
deformations of a type IIB background based on D5-branes that is conjectured to be dual
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to N =1 SYM [Rf] are studied. It is argued that this deformation only affects the Kaluza-
Klein sector of the dual field theory and helps decoupling the Kaluza-Klein dynamics from
the pure gauge dynamics. Recently, evidences for the above prediction have been given in
7. In this paper, semiclassical strings on the deformed Maldacena-Nunez background [RF]
are studied and the results are compared with those obtained previously for the undeformed
case [Bg. It was observed there that the string energies increase due to the deformation,
which is interpreted as a proof for better decoupling of the Kaluza-Klein modes in the
deformed theory. This is in accordance with R3], where it was conjectured that the sectors
in which the deformation is decoupled, should correspond to pure gauge theory effects. As
an additional evidence for the above idea, the authors of [R7] consider a particular string
configuration, for which the string energy is independent of the deformation. The articles
[BF] and [27] give us the line for further investigations in this direction. First, by performing
T'sT transformation [R9], one obtains the deformed eleven dimensional background. Second,
find rotating membrane solutions in this new background. Third, compare the energies of
the membranes moving on the original and on the deformed backgrounds and so on. The
same could be done for strings in type IIA theory in ten dimensions, which reproduce
the energy-charge relations obtained for rotating membranes. Then, a natural question is
whether the dimensional reduction and the deformation commute? We hope to be able to
report our results on these problems soon.
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A. Hypergeometric functions F' 1()")

)

Here, we give some properties of the hypergeometric functions of many variables F’ I(Dn used

in our calculations. By definition [P3], for |z;| < 1,

0o k k
b ... (b Lo 2kn
Fl()n) (a’7 b17 e 7bn7 C; 217 LR 7Zn) = Z (a)kl+...+kn( l)kl ( n)kn Zl Zn 9
Ko kn=0 (C)kl-l-...—l—kn kl' e kn'
where
I'(a+ k)

(a)r = W,

and I'(z) is the Euler’s I'-function. In particular, Fg)(a; byc;z) = oFi(a,b;c;z) is the
Gauss’ hypergeometric function, and Fg) (a;b1,be; ¢; 21, 22) = Fi(a,by,ba;c; 21, 22) is one of
the hypergeometric functions of two variables.

() (4 . -
1. FD (a7bl,...,bi,...,bj,...,bmc,zl,...,zi,...,zj,...,zn)—

()¢, -
FD (a,bl,...,bj,...,bi,...,bn,c,zl,...,zj,...,zl-,...,zn).
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2. Fgl)(a;bl,,.. Jonic 21, ... ,Zn) =

n
il_[l(l — zi)fbiFl()") (c—a;b1,...,bn;c; lei T ani 1) .

3. Fén)(a;bl7...,bi_l,bi,bi+1,...7bn;c;217...7ZZ'_1,17ZZ'+17...7Z”):
?EZ)E(:);(Z:Z;FSU(Q’ b1y ey bim 1,01y o b€ — i 21, ooy 21y Zik Ly e e Zn)-

4. Fl()n)(a;bl,...,bi,l,bi,bprl,...,bn;c;zl,...,zi,l,O,ziJrl,...,zn):
Fl()nil)(a,;bl,...,bifl,bzpi,l,...,bn;c;21,...,Zifl,zzpi,l,...,zn).

5. Fl()n)(a;bl,...,bi_l,O,bi_H,...,bn;c;zl,...,zi_l,zi,ziﬂ,...,zn):
Fén_l)(a;bl7...7b2‘_1,bi+1,...,bn;c;21,...,ZZ‘_17ZZ'+1,...7Z77/).

6. Fl()n)(a;bl,...,bi,...,bj,...,bn;c;zl,...,zi,...,zi,...,zn) =
Fl()nfl)(a;bl,...,bl-—i—bj,...,bn;c;zl,...,zi,...,zn).
7. Fl()2n+1)(a;a —c+1,ba,ba, ..., bop, bop;c; =1, 29, —29 ..., 2o, —Zop) =
I'(a/2)I'(c)
2l (a)T(c — a/2)

8. anH) (c—a;a—c+1,ba,ba, ..., bay, bay;c;

Fl()n)(a/Q;bg, oy bop e — a/2;z%,...,z§n)_

1/27_L72_2’___7_ “2n : “2n -
1—29" 1+ 29 1— 29, 14 20,
I'(a/2)[(c) (n) 22 23
F —a;ba, ... bopsc—af2; ———, ..., — g .
2¢=al(a)T(c — a/2)" P ¢ = aiby, bonse —a/2; 1—22777"7 1—22,

a/2,(a+1)/2,b
9. Fg)(a;b,b;c;z,—z):gFg( /2. )/ )

c/2,(c+1)/2; 22

B. More solutions

Here, we give other exact rotating membrane solutions and explicit expressions for the
corresponding conserved quantities, which lead to the same dependence of the energy on

the charges in the semiclassical limit, as part of those described in section f.

B.1 Fifth type of membrane embedding

Now, consider membrane, which moves with constant energy E and momenta P; and is
extended along the radial direction r. Also, it rotates in the plane defined by the angle
oy =+ é. In addition, the membrane is wrapped along the angular coordinates 1 = 9
and ¢_ = ¢ — ¢. This configuration corresponds to the following ansatz, for which the
constraints (B.11), (B.13) are identically satisfied, and P.=0 4,

X0=t=A7, X'=Alr, X'=r(0),

5 A ;
R o B R S S A Tt 1
1

4This is also true for all other embeddings further considered.
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The background felt by the membrane in this case, as well as in all other cases considered
below, is

l2
_ _ 2 _
goo = gu = —l1, g7 =01015,  Gaa = grr = 20’

41

2
s =t (3) C*0 g —BAC). g = BE0)

Therefore, in the notations introduced in (B.§), we have u = (0,1,1,—,+), a =4 =r. The

Lagrangian (B.9) takes the form
_ o A% (41
u'z+ (5) <A%>2],

The turning points defined by r’ = 0 coincide with those given in (f£.23). The solution
(B.17) now reads

"TOK(6)]Y? A IR, Bl—w) 17
o(r)= / [— = ] dt = 4\OTyly; [ o = )] Art/? x
3

1
= oo Enr® = V) K = —(2XTai})?

V= U = i [(A)? - A — (43257,

LA(0)

L U@ A | (r1 = 31) (31— 1y

FS (1/2;1/2,1/2,-1/2,-1/2, ~1/2;3/2;
_ Ar Ar B Ar B Ar B Ar
3[—7’277‘1—3l7 3[—’(1)1’ 3l—w2’ 3[—’(1)3 ’

where wg, (Alf) (aw =1,2,3) are the zeros of the polynomial

3 — 12— 12 1—<ﬁ>2 t+ 13 1—3<ﬁ>2 = (t — wy)(t — wa)(t — ws)
\/g \/g 1 2 3)-

The normalization condition (B.1§) leads to

2)\0T l £ Hi:l (3l — U)a) 2 «
AL 3l —ry

A A A A
FY (1/2; 1/2,-1/2,-1/2,~1/2;1; ———1 n n n ):

3l—7"2’_3l—w1’_3l—w2’_3l—w3

1/2 _
Lo Gl—wa) |77 () An N7 ﬁ L An
3l —ry 3l —ry 3l — wy

a=1

Ay
Ay

2\,

1 1 1 1
F(4) 1/2’ 1/25_1/25_1/25_1/2717 ) ) ) =
’ L L I g
In accordance with (B.14), we derive the following expression for the conserved momentum
P+ = P¢+I

l
P+ = §7T2T2l:151AI

3 B 1/2
a=1 (3l ’U)a)] A’I"l %
3l — T2

,27,



Ar A A A A
Fyy) (3/2;—1,1/2,—1/2,—1/2,—1/2;2; - - - 31 - 3l . >
2

417 3l—ry 3l —wy

z I, 31— wa)]"?

3[—7“2

Arq Arq R~
X Arq <1+4—l> <1+3l_m> 1;[
xF) (1/2-1,1/2,-1/2,-1/2,-1/2;2;

>1/2

1 1 1 1 1
1_|_A47{1’1+3l7‘2’1+3lw1’1+3lw2’1+3gr?3 :

Taking the semiclassical limit®, we obtain the following dependence of the energy on
P and Py:

E? = P2 4 3B3(aTol} A7) PP,

which is of the same type as (f.27). The semiclassical limit of the solution o (r) is given by:

2/3 T 3
Uscl("") = 271'1/3 <7J§£jA ) [H wa

A A A
) <1/2;—1/2,—1/2,—1/2;3/2;—3l T TRt e >

— w1 3l—w2’_

9 13 A—N\2/3T 3 1/2 3 1/2
2 (79P+ | | (3l — wq) Ar o!:ll 1+ ETR—

1/2
Arl/2 x

a=1

3 (. 2 /0. 1 1 1
<y (1,—1/2,—1/2,—1/2,3/2, ey ey
Ar

B.2 Sixth type of membrane embedding

Let us take the following membrane configuration:

XO=t=A07, X'=Alr, X'=r(0),
T v AJ +54 AT -
Y=Y =A <5+E0>7 o+ =Ao0+AS0, o_=A,T
It is similar to the case just considered, but the roles of the angles ¢4 and ¢_ are inter-
changed. Although the exact classical expressions for the quantities we are interested in
are different from those obtained for the previously considered embedding, one arrives at
the same semiclassical behavior:

E? = P2 4 393z Tyl3, AF)23PY3,

5In this limit w, remain finite.
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B.3 Seventh type of membrane embedding
Now, we consider membrane embedding, which corresponds to rotation in the plane given
by the angle ¢ = 1/;, and wrapping along ¢4 and ¢_:

X0=t=A)r, X'=Ar, X'=1(0),

) Ay
Y=d =M1, ¢ =AM+ A0, ¢+:AT<&+X%§'
1

The effective Lagrangian (B.9) now reads

1 1
LA(0) = 0 (K =V, Ky = —(2)\0T2l%1)2§ [(A7)?A% + (A])2B?],
AN
V=U=1F | (A~ AF - (g) (A5)*C? .

For the solutions of the equation " = 0 one obtains

8
Tmin = 3L, Tmaz =71 =1 |1+ ———5— >3,
_ Yo
1612(AY)?
8
o=l |14 —— <0, o} =(AD - Al
_ 0
1612(AY)2

For the membrane solution (B.17), we find the following explicit expression

:/T [_Krr(ﬂ]l/th:ngTan [(AD)? + (A7) [2[(3l—w+)(3l—w) 12
3l

U(t) wly oz 121 (=30 Bl—r2)
017 1612(AY)2

x APV2ED (1/2,-1,-1,1/2,1/2,1/2,—1/2, —1/2; 3/2;
H H H Ar Ar Ar Ar
207 47 617 3l—ry'ri =30 3l—wy 3l-—w_)’

where w4 are given by

e 1 | (D2 = (AD)? \/ (AT
UG rae 3+<<1+

The normalization condition (B.1§) gives:

N1,

(A1) + ()] 2 {m (31— wy) (31 —w_>]1/2

wo o 1/2 3l — 19
0 1612(AY)?

X O (1/2;-1,-1,1/2,1/2, —1/2, —1/2; 1;
. A’I“l _ AT’l B A’I“l _ A’I“l B AT’l _ A’I“l
207 4l 6l 3l—ry 3l—wy 3l—w_
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_yogy LA+ (A0 [2l(3l—w+)(3l—w)]1/2

Y| 99 V2 L=
0 1612(A))?

Ary Ary Ary\~V?
X <1+7) <1+T> <1+ﬁ>
Ar —1/2 Ary 1/2 Ary 1/2
1 1 1
X( +3l—r2> ( +3l—w+> ( +3l—w—>
xFp (12 -1,-1,1/2,1/2,-1/2,-1/21;

1 1 1 1 1 1
>:1.

21 4 6l ° 3l—r2 3l—w4 3l—w_
1+Ar1 1+Ar1 1+AT1 L+ Ary 1+ Ary 1+ Ary

In the case under consideration, the nontrivial conserved quantities are £, P and Py, = P@z}.
By using (B.14), we derive the following result for Py,

Py = m*Tul},

[(AD? + A" )P 6L —wy) (31— w )]
QU(Q) 1/2 3l — T2
31— 1612(AY)2

AryFY (3/2; —1/2,1/2,-1/2,—1/2;2; —

A?“l _ A?“l _ A?“l _ A?“l
6/ 3l—ry 3l—wy 3l—w_

[(AH)? + ()] {(21)3 (31— wy) (3 — w_>] ks

o[ 9072 1/2 3l —1ry
1612(AY)?

AT’l 1/2 AT’l ~1/2 A’I“l 1/2 AT’l 1/2
A 14+ —— 1 1 1
. ”( * 61> ( +3l—r2> ( +3l—w+> ( +3l—w_>

(4) 1 1 1 1
><‘F1D <1/27 _1/2’ 1/2? _1/2? _1/27 27 6l ° 3l—ro 31— ) 31— .
1+ R 1452 14+ 5 1+ 75

Based on the above expressions, in the semiclassical limit, we obtain:

= 7T2T2l21;1

3\? 3 _911/3 ~4/3
E?=P% 4 (47) P — Z(7r2T2zi1”1)2/3 [(A])? + (A7) Pw/ .
This is the same type of semiclassical behavior as the one in (4.34]). For large conserved

charges, the solution o(r) simplifies to

1672 TH13 on1/2 1/2
Tealr) = =gt (AT + AP [ 31— ) (3= )]
1/2 12(5) 1 _ 1 /0. ._H _H _H_ Ar _ Ar
AT FD <1/2a 1’ 1? 1/25 1/25 ]‘/2’ 3/27 2l ) 4[ ) 6l ) 3[ _ er’ 3[ —
1672 TH13
= TS AT 4 (A PT  (3— w) 81 - 0]
¥

Ar Ar Ar —1/2 Ar 1/2 Ar 1/2
Ar2 1+ 22 (122 ) (1 2= 1 1
" <+2l><+4l><+6l> <+3l—w+> <+3l—w> 8
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1 1 1 1 1
FO(1,-1,-1,1/2,-1/2,—1/2; 3/2; : , , , .
T+ 2714 AL 14 L7y See Ty S

B.4 Eighth type of membrane embedding

Here, we investigate the following membrane configuration:
X4 =r(0),

XTI = Alr,
¢+ = ASFT

X0 =t= A,
¢ =AM,

=1 =AV§+ Ao,

It describes membrane, rotating in the planes given by the angles ¢, and wrapped along
the coordinate 1) = 1. In this case, the reduced Lagrangian (B.9) have the form:

1 4\ ?
ACA(O') = N (KT‘TT/Q - V) > K, = _(2>‘0T2l%1)2 (g) (A%)Za
VU =B, [(AD? — A3~ (Ag?A% — (AD)B?] = i [ — (A5 )PA? — (AJ)PBY].

By solving the equation ' = 0 (see (B.1()), one obtains

_ ) A = (Ag)? (A$)? = (49)*] 1202
s { AP+ (g P J e R ey } |

Depending on the sign of [(Aj)? — (Ay)?], we have the following three cases.

L. (A)? = (Ag)*=0

2. (Ag)? = (Ag)* >0
5 ol ) )
= N s [ ) (1 s <Ao>2}> i 1}

3. (A7)* = (A5)* <0
= s o N v ] (1 T <Ao>2J> i 1} |
S T4 e — . Y
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In all these cases, the condition ry,,: = r1 > 3l = Ty, leads to vg > l2(A0 )2, SO we can

consider them simultaneously.
For the present embedding, the membrane solution (B.17) has the form

o) = [, [—Kggmm i

16007511, 1AY
= OA" ol 1A ArFl()Q) <1;1/2,1/2;2;—

(A2 + (A5)2] " 1B (ry — 31) (31 — r2)]

and the normalization condition (B.1§) reads

320011 1A an 172 L 151/2:3/2 — 201
[(AS-)2+(A5)2]1/2 3(3[—7“2) D ’ ) 5 3l —1ry

. 32)\0T2111ZA% A?“l 1/2 F 1 1/2'3/2‘_ A?“l
T a2 G-y 2 B S T,

3220301 1AY A 12 Arp \ 72 1
_ T [ n ] <1 y =0 > oF (1/2,1/23/2 ———
[(A$)2 + (A5)?] 3(3l — 1) 3l —1y 14 e
32)\0T2l11lA11ﬂ . 3l — (] —1/2
= — 73 arcsin 1+ A =T.
312 [(AF)? + (Ag)?] "
According to (B.14), the computation of the conserved momenta Py = Py, gives

3 12AY A+ 3 0\ 1/2
L - 64nThl7, 17 AT A _ < Ary ) Fl()z) (2;_1,1/2;5/2;_ﬂ’_ Arg >
35/2 [(AS-)Q + (Aa)Q] /2 \ 3l —ry 41 3l —ry

ATl PAVAY Ard \ 2 LAY (), An -1/2
N 35/2 [(Aar)Q + (Aa)Q]l/Q 3l — 19 41 3l — 179

1 1
x F?) <1/2-—1 1/2;5/2; )
D ) ) I ) 4] 3]— )
1+ Arqi 1+ Arr12

Ar Ar
3l—’l“2”l“1—3l ’

32Dl BAYAY < Ary >1/2
- _\911/2 _

31/2 [(Aar)2 + (A )2] /2 \ 3l — 19
A’I“l _A’I“l _ A’I“l
207 617 3l—ry

_ 3Dl PATAG A\ P ArY (1 ArY (14 AN o
N 31/2 [(A(J)F)Q + (Aa)z}lﬂ 3l —ry 21 6l 3l — 1y

xF®) <1/2;—1,—1,1/2;3/2; 1 1 1 )

20 61 3l—r2
1+Ar1 1+Ar1 1+ Arqi

x PP (1;—1,—1,1/2;3/2;—

In the semiclassical limit r; — 00, the above expressions for the normalization condition

and Py reduce to:

80Tyl 1 IAY PR3 IAAE

= 1, Pi = Vg -
312 [(AD)? + (A5)2] 312 [(AD)2 + (A5)2])
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Combining these equalities with ([.g), one obtains the following relation between E, P and

Py

B2 = P2+ (128/3)' /2 > Tyl3 IAY (P2 + P?)'/2.

This is the same semiclassical behavior as in @)

Finally, let us write down the semiclassical limit of the solution o(r) for the present

embedding. It is the simplest one, we have been able to obtain in this paper, and is given

by:

P2 P2 1/4 A A
osal(1) = ( + 7) ATFg) (1;1/2,1/2;2;__7",_7")
(253)1/4(n2Tol3, IAY )1/ Ary Ay

(P2 + p2)"/* o F 1/2,1,1/2
T
(253) VA (m2 oAl )2 07\ 1,3/2; A

) Ar%

p2 4+ p2)'/* A2

~ (95 5/4—’— 2 3) v 1/2AT 2F1 <1/2,1/2;3/2; p>

(253)V/4(m2 ot} IAT) -
(P2 + p2)"/*

,
— Arqyaresin [ — | .
(253)1/4 (72 Tol3, IAY)1/2 ' (Ar1>

Obviously, it can be inverted to give

1/4
1ya_(PE+P2)
(72T2l§1m11p)1/2

1 T IAY
1/2
(P2 +P2)Y

rscl(o') =3l + (27/2) sin [(8/3)

References

[1] S.S. Gubser, L.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string
correspondence, |[Nucl. Phys. B 636 (2002) 99 [hep—th/0204051].

[2] E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002)|

303 [hep-th/0205131].

[3] M. Alishahiha and M. Ghasemkhani, Orbiting membranes in M-theory on AdS7 x S*
background, JHEP 08 (2002) 046 [hep-th/0206237.

[4] M. Alishahiha and A.E. Mosaffa, Circular semiclassical string solutions on confining
AdS/CFT backgrounds, JHEP 10 (2002) 060 [hep-th/0210122].

[5] S.A. Hartnoll and C. Nufiez, Rotating membranes on Go manifolds, logarithmic anomalous
dimensions and N = 1 duality, JHEP 02 (2003) 049 [hep-th/0210219].

[6] P. Bozhilov, M2-brane solutions in AdS; x S*, |[JHEP 10 (2003) 032 [hep-th/0309218].

[7] J. Hoppe and S. Theisen, Spinning membranes on AdS, x S9, hep-th/0405170.

[8] J. Brugues, J. Rojo and J.G. Russo, Non-perturbative states in type-II superstring theory
from classical spinning membranes, [Nucl. Phys. B 710 (2005) 117 [hep-th/0408174].

[9] P. Bozhilov, Membrane solutions in M-theory, JHEP 08 (2005) 087 [hep-th/0507149].

,33,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB636%2C99
http://xxx.lanl.gov/abs/hep-th/0204051
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB644%2C303
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB644%2C303
http://xxx.lanl.gov/abs/hep-th/0205131
http://jhep.sissa.it/stdsearch?paper=08%282002%29046
http://xxx.lanl.gov/abs/hep-th/0206237
http://jhep.sissa.it/stdsearch?paper=10%282002%29060
http://xxx.lanl.gov/abs/hep-th/0210122
http://jhep.sissa.it/stdsearch?paper=02%282003%29049
http://xxx.lanl.gov/abs/hep-th/0210218
http://jhep.sissa.it/stdsearch?paper=10%282003%29032
http://xxx.lanl.gov/abs/hep-th/0309215
http://xxx.lanl.gov/abs/hep-th/0405170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB710%2C117
http://xxx.lanl.gov/abs/hep-th/0408174
http://jhep.sissa.it/stdsearch?paper=08%282005%29087
http://xxx.lanl.gov/abs/hep-th/0507149

J. Engquist and P. Sundell, Brane partons and singleton strings, hep—th/0508124.

U. Gursoy, C. Nunez and M. Schvellinger, RG flows from Spin(7), CY 4-fold and HK
manifolds to AdS, Penrose limits and pp waves, JHEP 06 (2002) 015 [hep-th/0203124].

M. Schvellinger, Spinning and rotating strings for N =1 SYM theory and brane

M. Axenides, E.G. Floratos and L. Perivolaropoulos, Rotating toroidal branes in
supermembrane and matriz theory, [Phys. Rev. D 66 (2002) 085006 [hep—th/0206114].

A. Brandhuber, J. Gomis, S.S. Gubser and S. Gukov, Gauge theory at large-N and new Go
holonomy metrics, [Nucl. Phys. B 611 (2001) 179 [hep-th/0106034].

R.L. Bryant, and S. Salamon, On the construction of some complete metrics with exceptional
G.W. Gibbons, D.N. Page and C.N. Pope, Einstein metrics on S, R?, and R* bundles,

M. Cveti¢, G.W. Gibbons, H. Lu and C.N. Pope, Hyper-kaehler calabi metrics, L*> harmonic
forms, resolved M2-branes and AdS4/CFT(3) correspondence, [Nucl. Phys. B 617 (2001) 151

P. Candelas and X. C. de la Ossa, Comments On Conifolds, [Nucl. Phys. B 342 (1990) 244.

L.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades
and xSB-resolution of Naked singularities, JHEP 08 (2000) 052 [hep-th/0007191].

B.S. Acharya, On realising N = 1 super Yang-Mills in M-theory, hep-th/0011089.

M. Atiyah, J.M. Maldacena and C. Vafa, An M-theory flop as a large-N duality, J. Math

P. Bozhilov, Probe branes dynamics: exact solutions in general backgrounds,

A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and series, v. 8. More special

U. Gursoy and C. Nunez, Dipole deformations of N =1 sym and supergravity backgrounds
with U(1) x U(1) global symmetry, [Nucl. Phys. B 725 (2005) 45 [hep-th/0505100].

J.M. Maldacena and C. Nuanez, Towards the large-N limit of pure N = 1 super Yang-Mills,

N.P. Bobev, H. Dimov and R.C. Rashkov, Semiclassical strings, dipole deformations of

J.M. Pons and P. Talavera, Semi-classical string solutions for N =1 SYM,

[10]
[11]
[12]
constructions, JHEP 02 (2004) 064 [hep-th/0309161]].
[13]
[14]
[15]
holonomy, Duke Math. J. 58 (1989) 829.
[16]
Commun. Math. Phys. 127 (1990) 529.
[17]
[hep-th/010218§].
[18]
[19]
[20]
[21]
Phys. 42 (2001) 3209 [hep-th/001125§].
[22]
656 (2003) 199 [hep-th/0211181].
[23]
functions, NY, Gordon and Breach, 1990.
[24] P. Bozhilov, to appear.
[25]
[26]
[Phys. Rev. Lett. 86 (2001) 58§ [hep—th/0008001]].
[27]
N =1 SYM and decoupling of kk modes, hep-th/0511214.
[28]
665 (2003) 129 [hep-th/030117§].
[29]

S. Frolov, Laz pair for strings in Lunin-Maldacena background, [JHEP 05 (2005) 069
[hep-th/0503201].

,34,


http://xxx.lanl.gov/abs/hep-th/0508124
http://jhep.sissa.it/stdsearch?paper=06%282002%29015
http://xxx.lanl.gov/abs/hep-th/0203124
http://jhep.sissa.it/stdsearch?paper=02%282004%29066
http://xxx.lanl.gov/abs/hep-th/0309161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C085006
http://xxx.lanl.gov/abs/hep-th/0206116
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB611%2C179
http://xxx.lanl.gov/abs/hep-th/0106034
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB617%2C151
http://xxx.lanl.gov/abs/hep-th/0102185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB342%2C246
http://jhep.sissa.it/stdsearch?paper=08%282000%29052
http://xxx.lanl.gov/abs/hep-th/0007191
http://xxx.lanl.gov/abs/hep-th/0011089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C42%2C3209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C42%2C3209
http://xxx.lanl.gov/abs/hep-th/0011256
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB656%2C199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB656%2C199
http://xxx.lanl.gov/abs/hep-th/0211181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB725%2C45
http://xxx.lanl.gov/abs/hep-th/0505100
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C588
http://xxx.lanl.gov/abs/hep-th/0008001
http://xxx.lanl.gov/abs/hep-th/0511216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB665%2C129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB665%2C129
http://xxx.lanl.gov/abs/hep-th/0301178
http://jhep.sissa.it/stdsearch?paper=05%282005%29069
http://xxx.lanl.gov/abs/hep-th/0503201

